Skip to main content
Log in

Frequency-Following Responses in Sensorineural Hearing Loss: A Systematic Review

  • Original Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Purpose

This systematic review aims to assess the impact of sensorineural hearing loss (SNHL) on various frequency-following response (FFR) parameters.

Methods

Following PRISMA guidelines, a systematic review was conducted using PubMed, Web of Science, and Scopus databases up to January 2023. Studies evaluating FFRs in patients with SNHL and normal hearing controls were included.

Results

Sixteen case–control studies were included, revealing variability in acquisition parameters. In the time domain, patients with SNHL exhibited prolonged latencies. The specific waves that were prolonged differed across studies. There was no consensus regarding wave amplitude in the time domain. In the frequency domain, focusing on studies that elicited FFRs with stimuli of 170 ms or longer, participants with SNHL displayed a significantly smaller fundamental frequency (F0). Results regarding changes in the temporal fine structure (TFS) were inconsistent.

Conclusion

Patients with SNHL may require more time for processing (speech) stimuli, reflected in prolonged latencies. However, the exact timing of this delay remains unclear. Additionally, when presenting longer stimuli (≥ 170 ms), patients with SNHL show difficulties tracking the F0 of (speech) stimuli. No definite conclusions could be drawn on changes in wave amplitude in the time domain and the TFS in the frequency domain. Patient characteristics, acquisition parameters, and FFR outcome parameters differed greatly across studies. Future studies should be performed in larger and carefully matched subject groups, using longer stimuli presented at the same intensity in dB HL for both groups, or at a carefully determined maximum comfortable loudness level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data sharing does not apply to this article as no new data were created or analyzed in this study. The list of studies included in this scoping review that support the findings of this review are openly available in the supplementary files and reference list.

References

  1. Krizman J, Kraus N (2019) Analyzing the FFR: a tutorial for decoding the richness of auditory function. Hear Res 382:107779

    Article  PubMed  PubMed Central  Google Scholar 

  2. Coffey EBJ, Nicol T, White-Schwoch T, Chandrasekaran B, Krizman J, Skoe E et al (2019) Evolving perspectives on the sources of the frequency-following response. Nat Commun 10(1):5036

    Article  PubMed  PubMed Central  Google Scholar 

  3. Weiss MW, Bidelman GM (2015) Listening to the brainstem: musicianship enhances intelligibility of subcortical representations for speech. J Neurosci 35(4):1687–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Galbraith GC, Arbagey PW, Branski R, Comerci N, Rector PM (1995) Intelligible speech encoded in the human brain stem frequency-following response. NeuroReport 6(17):2363–2367

    Article  CAS  PubMed  Google Scholar 

  5. Bidelman GM (2015) Multichannel recordings of the human brainstem frequency-following response: scalp topography, source generators, and distinctions from the transient ABR. Hear Res 323:68–80

    Article  PubMed  Google Scholar 

  6. Chandrasekaran B, Kraus N (2010) The scalp-recorded brainstem response to speech: neural origins and plasticity. Psychophysiology 47(2):236–246

    Article  PubMed  Google Scholar 

  7. Sohmer H, Pratt H, Kinarti R (1977) Sources of frequency following responses (FFR) in man. Electroencephalogr Clin Neurophysiol 42(5):656–664

    Article  CAS  PubMed  Google Scholar 

  8. White-Schwoch T, Nicol T, Warrier CM, Abrams DA, Kraus N (2017) Individual differences in human auditory processing: insights from single-trial auditory midbrain activity in an animal model. Cereb Cortex 27(11):5095–5115

    Article  PubMed  Google Scholar 

  9. White-Schwoch T, Anderson S, Krizman J, Nicol T, Kraus N (2019) Case studies in neuroscience: subcortical origins of the frequency-following response. J Neurophysiol 122(2):844–848

    Article  PubMed  Google Scholar 

  10. Gorina-Careta N, Kurkela JLO, Hämäläinen J, Astikainen P, Escera C (2021) Neural generators of the frequency-following response elicited to stimuli of low and high frequency: a magnetoencephalographic (MEG) study. Neuroimage 231:117866

    Article  PubMed  Google Scholar 

  11. Ribas-Prats T, Arenillas-Alcón S, Lip-Sosa DL, Costa-Faidella J, Mazarico E, Gómez-Roig MD et al (2022) Deficient neural encoding of speech sounds in term neonates born after fetal growth restriction. Dev Sci 25(3):e13189

    Article  PubMed  Google Scholar 

  12. Kraus N, Nicol T (2017) The power of sound for brain health. Nat Hum Behav 1(10):700–702

    Article  PubMed  Google Scholar 

  13. Nozaradan S, Schönwiesner M, Caron-Desrochers L, Lehmann A (2016) Enhanced brainstem and cortical encoding of sound during synchronized movement. Neuroimage 142:231–240

    Article  PubMed  Google Scholar 

  14. Musacchia G, Sams M, Skoe E, Kraus N (2007) Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proc Natl Acad Sci U S A 104(40):15894–15898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Skoe E, Kraus N (2010) Auditory brain stem response to complex sounds: a tutorial. Ear Hear 31(3):302–324

    Article  PubMed  PubMed Central  Google Scholar 

  16. Aiken SJ, Picton TW (2008) Envelope and spectral frequency-following responses to vowel sounds. Hear Res 245(1–2):35–47

    Article  PubMed  Google Scholar 

  17. Banai K, Hornickel J, Skoe E, Nicol T, Zecker S, Kraus N (2009) Reading and subcortical auditory function. Cereb Cortex 19(11):2699–2707

    Article  PubMed  PubMed Central  Google Scholar 

  18. Krishnan A (2002) Human frequency-following responses: representation of steady-state synthetic vowels. Hear Res 166(1–2):192–201

    Article  PubMed  Google Scholar 

  19. López-Caballero F, Martin-Trias P, Ribas-Prats T, Gorina-Careta N, Bartrés-Faz D, Escera C (2020) Effects of cTBS on the frequency-following response and other auditory evoked potentials. Front Hum Neurosci 14:250

    Article  PubMed  PubMed Central  Google Scholar 

  20. Carcagno S, Plack CJ (2011) Subcortical plasticity following perceptual learning in a pitch discrimination task. J Assoc Res Otolaryngol 12(1):89–100

    Article  PubMed  Google Scholar 

  21. Krishnan A, Xu Y, Gandour J, Cariani P (2005) Encoding of pitch in the human brainstem is sensitive to language experience. Brain Res Cogn Brain Res 25(1):161–168

    Article  PubMed  Google Scholar 

  22. Anderson S, Parbery-Clark A, White-Schwoch T, Drehobl S, Kraus N (2013) Effects of hearing loss on the subcortical representation of speech cues. J Acoust Soc Am 133(5):3030–3038

    Article  PubMed  PubMed Central  Google Scholar 

  23. Krizman J, Marian V, Shook A, Skoe E, Kraus N (2012) Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages. Proc Natl Acad Sci U S A 109(20):7877–7881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Parbery-Clark A, Strait DL, Anderson S, Hittner E, Kraus N (2011) Musical experience and the aging auditory system: implications for cognitive abilities and hearing speech in noise. PLoS ONE 6(5):e18082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Skoe E, Kraus N (2012) A little goes a long way: how the adult brain is shaped by musical training in childhood. J Neurosci 32(34):11507–11510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bidelman GM (2013) The role of the auditory brainstem in processing musically relevant pitch. Front Psychol 4:264

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bidelman GM, Alain C (2015) Musical training orchestrates coordinated neuroplasticity in auditory brainstem and cortex to counteract age-related declines in categorical vowel perception. J Neurosci 35(3):1240–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chandrasekaran B, Hornickel J, Skoe E, Nicol T, Kraus N (2009) Context-dependent encoding in the human auditory brainstem relates to hearing speech in noise: implications for developmental dyslexia. Neuron 64(3):311–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Billiet CR, Bellis TJ (2011) The relationship between brainstem temporal processing and performance on tests of central auditory function in children with reading disorders. J Speech Lang Hear Res 54(1):228–242

    Article  PubMed  Google Scholar 

  30. Bidelman GM, Lowther JE, Tak SH, Alain C (2017) Mild Cognitive Impairment Is Characterized by Deficient Brainstem and Cortical Representations of Speech. J Neurosci 37(13):3610–3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Font-Alaminos M, Cornella M, Costa-Faidella J, Hervás A, Leung S, Rueda I et al (2020) Increased subcortical neural responses to repeating auditory stimulation in children with autism spectrum disorder. Biol Psychol 149:107807

    Article  PubMed  Google Scholar 

  32. Otto-Meyer S, Krizman J, White-Schwoch T, Kraus N (2018) Children with autism spectrum disorder have unstable neural responses to sound. Exp Brain Res 236(3):733–743

    Article  PubMed  Google Scholar 

  33. Vasilkov V, Garrett M, Mauermann M, Verhulst S (2021) Enhancing the sensitivity of the envelope-following response for cochlear synaptopathy screening in humans: The role of stimulus envelope. Hear Res 400:108132

    Article  PubMed  Google Scholar 

  34. Verhulst S, Ernst F, Garrett M, Vasilkov V (2018) Suprathreshold psychoacoustics and envelope-following response relations: normal-hearing, synaptopathy and cochlear gain loss. Acta Acust Acust 104(5):800–803

    Article  Google Scholar 

  35. White-Schwoch T, Anderson S, Krizman J, Bonacina S, Nicol T, Bradlow AR et al (2022) Multiple cases of auditory neuropathy illuminate the importance of subcortical neural synchrony for speech-in-noise recognition and the frequency-following response. Ear Hear 43(2):605–619

    Article  PubMed  Google Scholar 

  36. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  37. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. PLoS Med 18(3):e1003583

    Article  PubMed  PubMed Central  Google Scholar 

  38. Universiteit Utrecht (2022) Clinical questions: get going [updated 09/09/2022]. Available from: https://libguides.library.uu.nl/clinical_questions

  39. Kraus N, Anderson S, White-Schwoch T (2017) The frequency-following response: a window into human communication. In: Kraus N, Anderson S, White-Schwoch T, Fay RR, Popper AN (eds) The Frequency-Following Response: A Window into Human Communication. Springer International Publishing, Cham, pp 1–15

    Chapter  Google Scholar 

  40. Wells G, Shea B, O'Connell D et al (2021) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Available from: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

  41. McPheeters ML, Kripalani S, Peterson NB, Idowu RT, Jerome RN, Potter SA et al (2012) Closing the quality gap: revisiting the state of the science (vol. 3: quality improvement interventions to address health disparities). Evid Rep Technol Assess (208.3):1–475

  42. Koravand A, Al Osman R, Rivest V, Poulin C (2017) Speech-evoked auditory brainstem responses in children with hearing loss. Int J Pediatr Otorhinolaryngol 99:24–29

    Article  PubMed  Google Scholar 

  43. Nada NM, Kolkaila EA, Gabr TA, El-Mahallawi TH (2016) Speech auditory brainstem response audiometry in adults with sensorineural hearing loss. Egyptian Journal of Ear, Nose, Throat and Allied Sciences 17(2):87–94

    Article  Google Scholar 

  44. Jalaeia B, Zakariab MN (2019) Speech-evoked auditory brainstem response in children with sensorineural hearing loss. Glob J Otolaryngol 20(4):556042. https://doi.org/10.19080/GJO.2019.20.556042

  45. Ji H, Yu X, Xiao Z, Zhu H, Liu P, Lin H et al (2023) Features of cognitive ability and central auditory processing of preschool children with minimal and mild hearing loss. J Speech Lang Hear Res 66(5):1867–1888

    Article  PubMed  Google Scholar 

  46. Leite RA, Magliaro FCL, Raimundo JC, Gandara M, Garbi S, Bento RF et al (2018) Effect of hearing aids use on speech stimulus decoding through speech-evoked ABR. Braz J Otorhinolaryngol 84(1):66–73

    Article  Google Scholar 

  47. Ananthakrishnan S, Krishnan A, Bartlett E (2016) Human frequency following response: neural representation of envelope and temporal fine structure in listeners with normal hearing and sensorineural hearing loss. Ear Hear 37(2):e91–e103

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hao W, Wang Q, Li L, Qiao Y, Gao Z, Ni D et al (2018) Effects of phase-locking deficits on speech recognition in older adults with presbycusis. Front Aging Neurosci 10:397

    Article  PubMed  PubMed Central  Google Scholar 

  49. Roque L, Gaskins C, Gordon-Salant S, Goupell MJ, Anderson S (2019) Age effects on neural representation and perception of silence duration cues in speech. J Speech Lang Hear Res 62(4s):1099–1116

    Article  PubMed  PubMed Central  Google Scholar 

  50. Seol HY, Park S, Ji YS, Hong SH, Moon IJ (2020) Impact of hearing aid noise reduction algorithms on the speech-evoked auditory brainstem response. Sci Rep 10(1):10773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Akhoun I, Moulin A, Jeanvoine A, Menard M, Buret F, Vollaire C et al (2008) Speech auditory brainstem response (speech ABR) characteristics depending on recording conditions, and hearing status an experimental parametric study. J Neurosci Methods 175(2):196–205

    Article  PubMed  Google Scholar 

  52. Molis MR, Bologna WJ, Madsen BM, Muralimanohar RK, Billings CJ (2023) Frequency following responses to tone glides: effects of age and hearing loss. J Assoc Res Otolaryngol 24(4):429–439

    Article  PubMed  Google Scholar 

  53. Presacco A, Simon JZ, Anderson S (2019) Speech-in-noise representation in the aging midbrain and cortex: Effects of hearing loss. PLoS ONE 14(3):e0213899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fu Z, Yang H, Chen F, Wu X, Chen J (2019) Brainstem encoding of frequency-modulated sweeps is relevant to Mandarin concurrent-vowels identification for normal-hearing and hearing-impaired listeners. Hear Res 380:123–136

    Article  PubMed  Google Scholar 

  55. Abd El-Ghaffar NM, El-Gharib AM, Kolkaila EA, Elmahallawy TH (2018) Speech-evoked auditory brainstem response with ipsilateral noise in adults with unilateral hearing loss. Acta Otolaryngol 138(2):145–152

    Article  CAS  PubMed  Google Scholar 

  56. Plyler PN, Ananthanarayan AK (2001) Human frequency-following responses: representation of second formant transitions in normal-hearing and hearing-impaired listeners. J Am Acad Audiol 12(10):523–533

    Article  CAS  PubMed  Google Scholar 

  57. Parthasarathy A, Datta J, Torres JA, Hopkins C, Bartlett EL (2014) Age-related changes in the relationship between auditory brainstem responses and envelope-following responses. J Assoc Res Otolaryngol 15(4):649–661

    Article  PubMed  PubMed Central  Google Scholar 

  58. Clinard CG, Tremblay KL, Krishnan AR (2010) Aging alters the perception and physiological representation of frequency: evidence from human frequency-following response recordings. Hear Res 264(1–2):48–55

    Article  PubMed  Google Scholar 

  59. Russo N, Nicol T, Musacchia G, Kraus N (2004) Brainstem responses to speech syllables. Clin Neurophysiol 115(9):2021–2030

    Article  PubMed  PubMed Central  Google Scholar 

  60. BinKhamis G, Elia Forte A, Reichenbach T, O’Driscoll M, Kluk K (2019) Speech auditory brainstem responses in adult hearing aid users: effects of aiding and background noise, and prediction of behavioral measures. Trends Hear 23

  61. Easwar V, Purcell D, Wright T (2023) Predicting hearing aid benefit using speech-evoked envelope following responses in children with hearing loss. Trends Hear 27:23312165231151468

    PubMed  PubMed Central  Google Scholar 

  62. Easwar V, Purcell DW, Aiken SJ, Parsa V, Scollie SD (2015) Evaluation of speech-evoked envelope following responses as an objective aided outcome measure: effect of stimulus level, bandwidth, and amplification in adults with hearing loss. Ear Hear 36(6):635–652

    Article  PubMed  Google Scholar 

  63. Karawani H, Jenkins KA, Anderson S (2018) Neural and behavioral changes after the use of hearing aids. Clin Neurophysiol 129(6):1254–1267

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kessler DM, Ananthakrishnan S, Smith SB, D’Onofrio K, Gifford RH (2020) Frequency following response and speech recognition benefit for combining a cochlear implant and contralateral hearing aid. Trends Hear 24:2331216520902001

    PubMed  PubMed Central  Google Scholar 

  65. Easwar V, Birstler J, Harrison A, Scollie S, Purcell D (2022) The influence of sensation level on speech-evoked envelope following responses. Ear Hear 43(1):250–254

    Article  PubMed  Google Scholar 

  66. Goossens T, Vercammen C, Wouters J, van Wieringen A (2019) The association between hearing impairment and neural envelope encoding at different ages. Neurobiol Aging 74:202–212

    Article  PubMed  Google Scholar 

  67. Farahani ED, Wouters J, van Wieringen A (2022) Age-related hearing loss is associated with alterations in temporal envelope processing in different neural generators along the auditory pathway. Front Neurol 13:905017

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

We would like to acknowledge that this research was partially conducted and made possible through a research stay at the University of Barcelona, supported by a grant for a short research stay provided by the FWO (Fonds voor Wetenschappelijk Onderzoek—Research Foundation Flanders), grant number K208323N. Carles Escera was supported by the Spanish Ministry of Science and Innovation the project PID2021-122255NB-100 supported by MCIN/AEI/10.13039/501100011033/FEDER, UE; the María de Maeztu Center of Excellence CEX2021-001159-M (supported by MCIN/AEI/10.13039/501100011033); the 2021SGR-00356 Consolidated Research Group of the Catalan Government, and the ICREA Acadèmia Distinguished Professorship award.

Author information

Authors and Affiliations

Authors

Contributions

Laura Jacxsens: conceptualization, methodology, formal analysis, writing—original draft, writing—review and editing, visualization. Lana Biot: data curation, formal analysis, writing—review and editing. Carles Escera: conceptualization, supervision, writing—review and editing. Annick Gilles: supervision, writing—review and editing. Emilie Cardon: conceptualization, writing—review and editing. Vincent Van Rompaey: conceptualization, supervision, writing—review and editing. Willem De Hertogh: conceptualization, supervision, writing—review and editing. Marc Lammers: conceptualization, methodology, supervision, writing—review and editing.

Corresponding author

Correspondence to Laura Jacxsens.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 77 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacxsens, L., Biot, L., Escera, C. et al. Frequency-Following Responses in Sensorineural Hearing Loss: A Systematic Review. JARO 25, 131–147 (2024). https://doi.org/10.1007/s10162-024-00932-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-024-00932-7

Keywords

Navigation