Skip to main content

Advertisement

Log in

Reverse Correlation Analysis of Auditory-Nerve Fiber Responses to Broadband Noise in a Bird, the Barn Owl

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

While the barn owl has been extensively used as a model for sound localization and temporal coding, less is known about the mechanisms at its sensory organ, the basilar papilla (homologous to the mammalian cochlea). In this paper, we characterize, for the first time in the avian system, the auditory nerve fiber responses to broadband noise using reverse correlation. We use the derived impulse responses to study the processing of sounds in the cochlea of the barn owl. We characterize the frequency tuning, phase, instantaneous frequency, and relationship to input level of impulse responses. We show that, even features as complex as the phase dependence on input level, can still be consistent with simple linear filtering. Where possible, we compare our results with mammalian data. We identify salient differences between the barn owl and mammals, e.g., a much smaller frequency glide slope and a bimodal impulse response for the barn owl, and discuss what they might indicate about cochlear mechanics. While important for research on the avian auditory system, the results from this paper also allow us to examine hypotheses put forward for the mammalian cochlea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14

Similar content being viewed by others

References

  • Anderson DJ, Rose JE, Hind JE, Brugge JF (1971) Temporal position of discharges in single auditory nerve fibers within the cycle of a sine‐wave stimulus: frequency and intensity effects. J Acoust Soc Am 49:1131–1139. doi:10.1121/1.1912474

    Article  PubMed  Google Scholar 

  • Carney LH (1993) A model for the responses of low-frequency auditory-nerve fibers in cat. J Acoust Soc Am 93:401

    Article  CAS  PubMed  Google Scholar 

  • Carney LH, Yin TC (1988) Temporal coding of resonances by low-frequency auditory nerve fibers: single-fiber responses and a population model. J Neurophysiol 60:1653–1677

    CAS  PubMed  Google Scholar 

  • Carney LH, McDuffy MJ, Shekhter I (1999) Frequency glides in the impulse responses of auditory-nerve fibers. J Acoust Soc Am 105:2384

    Article  CAS  PubMed  Google Scholar 

  • Carr C, Konishi M (1990) A circuit for detection of interaural time differences in the brain stem of the barn owl. J Neurosci 10:3227–3246

    CAS  PubMed  Google Scholar 

  • De Boer E, de Jongh HR (1978) On cochlear encoding: potentialities and limitations of the reverse-correlation technique. J Acoust Soc Am 63:115–135

    Article  PubMed  Google Scholar 

  • De Boer E, Nuttall AL (1997) The mechanical waveform of the basilar membrane. I. Frequency modulations (“glides”) in impulse responses and cross-correlation functions. J Acoust Soc Am 101:3583–3592

    Article  PubMed  Google Scholar 

  • Fischer BJ, Christianson GB, Peña JL (2008) Cross-correlation in the auditory coincidence detectors of owls. J Neurosci 28:8107–8115. doi:10.1523/JNEUROSCI.1969-08.2008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fischer BJ, Steinberg LJ, Fontaine B et al (2011) Effect of instantaneous frequency glides on interaural time difference processing by auditory coincidence detectors. Proc Natl Acad Sci 108:18138–18143. doi:10.1073/pnas.1108921108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fontaine B, Benichoux V, Joris PX, Brette R (2013) Predicting spike timing in highly synchronous auditory neurons at different sound levels. J Neurophysiol 110:1672–1688. doi:10.1152/jn.00051.2013

    Article  PubMed Central  PubMed  Google Scholar 

  • Fontaine B, MacLeod KM, Lubejko ST et al (2014) Emergence of band-pass filtering through adaptive spiking in the owl’s cochlear nucleus. J Neurophysiol 12:430–445. doi:10.1152/jn.00132.2014

    Article  Google Scholar 

  • Fuchs PA, Nagai T, Evans MG (1988) Electrical tuning in hair cells isolated from the chick cochlea. J Neurosci 8:2460–2467

    CAS  PubMed  Google Scholar 

  • Guinan JJ Jr (2012) How are inner hair cells stimulated? Evidence for multiple mechanical drives. Hear Res 292:35–50. doi:10.1016/j.heares.2012.08.005

    Article  PubMed Central  PubMed  Google Scholar 

  • Guinan JJ Jr, Cooper NP (2008) Medial olivocochlear efferent inhibition of basilar-membrane responses to clicks: evidence for two modes of cochlear mechanical excitation. J Acoust Soc Am 124:1080–1092. doi:10.1121/1.2949435

    Article  PubMed Central  PubMed  Google Scholar 

  • Gummer AW, Smolders JW, Klinke R (1987) Basilar membrane motion in the pigeon measured with the Mössbauer technique. Hear Res 29:63–92

    Article  CAS  PubMed  Google Scholar 

  • Irino T, Patterson RD (2001) A compressive gammachirp auditory filter for both physiological and psychophysical data. J Acoust Soc Am 109:2008

  • Kijewski-Correa T, Kareem A (2006) Efficacy of Hilbert and wavelet transforms for time-frequency analysis. J Eng Mech 132:1037–1049

    Article  Google Scholar 

  • Köppl C (1997a) Frequency tuning and spontaneous activity in the auditory nerve and cochlear nucleus magnocellularis of the barn owl Tyto alba. J Neurophysiol 77:364–377

    PubMed  Google Scholar 

  • Köppl C (1997b) Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. J Neurosci 17:3312–3321

    PubMed  Google Scholar 

  • Köppl C (1997c) Number and axon calibres of cochlear afferents in the barn owl. Aud Neurosci 3:313–334

    Google Scholar 

  • Köppl C (2011) Birds—same thing, but different? Convergent evolution in the avian and mammalian auditory systems provides informative comparative models. Hear Res 273:65–71. doi:10.1016/j.heares.2010.03.095

    Article  PubMed  Google Scholar 

  • Köppl C, Gleich O (2007) Evoked cochlear potentials in the barn owl. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193:601–612. doi:10.1007/s00359-007-0215-0

    Article  PubMed  Google Scholar 

  • Köppl C, Gleich O, Manley GA (1993) An auditory fovea in the barn owl cochlea. J Comp Physiol A 171:695–704. doi:10.1007/BF00213066

    Article  Google Scholar 

  • Lewis ER, Henry KR, Yamada WM (2002) Tuning and timing in the gerbil ear: Wiener-kernel analysis. Hear Res 174:206–221

    Article  PubMed  Google Scholar 

  • Lin T, Guinan JJ Jr (2004) Time-frequency analysis of auditory-nerve-fiber and basilar-membrane click responses reveal glide irregularities and non-characteristic-frequency skirts. J Acoust Soc Am 116:405–416

    Article  PubMed  Google Scholar 

  • Manley GA, Gleich O, Leppelsack HJ, Oeckinghaus H (1985) Activity patterns of cochlear ganglion neurones in the starling. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 157:161–181

  • Manley GA, Köppl C (1998) Phylogenetic development of the cochlea and its innervation. Curr Opin Neurobiol 8:468–474

    Article  CAS  PubMed  Google Scholar 

  • Mc Laughlin M, Van de Sande B, van der Heijden M, Joris PX (2007) Comparison of bandwidths in the inferior colliculus and the auditory nerve. I. Measurement using a spectrally manipulated stimulus. J Neurophysiol 98:2566–2579. doi:10.1152/jn.00595.2007

    Article  PubMed  Google Scholar 

  • Michelet P, Kovačić D, Joris PX (2012) Ongoing temporal coding of a stochastic stimulus as a function of intensity: time-intensity trading. J Neurosci 32:9517–9527. doi:10.1523/JNEUROSCI.0103-12.2012

    Article  CAS  PubMed  Google Scholar 

  • Moller AR (1977) Frequency selectivity of single auditory-nerve fibers in response to broadband noise stimuli. J Acoust Soc Am 62:135–142. doi:10.1121/1.381495

    Article  CAS  PubMed  Google Scholar 

  • Palmer A, Shackleton T (2009) Variation in the phase of response to lowfrequency pure tones in the guinea pig auditory nerve as functions of stimulus level and frequency. J Assoc Res Otolaryngol 10:233–250

  • Papoulis A (1977) Signal analysis. McGraw-Hill

  • Peña JL, Viete S, Albeck Y, Konishi M (1996) Tolerance to sound intensity of binaural coincidence detection in the nucleus laminaris of the owl. J Neurosci 16:7046–7054

    PubMed  Google Scholar 

  • Recio A, Rhode WS (2000) Basilar membrane responses to broadband stimuli. J Acoust Soc Am 108:2281–2298

    Article  CAS  PubMed  Google Scholar 

  • Recio A, Rich NC, Narayan SS, Ruggero MA (1998) Basilar-membrane responses to clicks at the base of the chinchilla cochlea. J Acoust Soc Am 103:1972–1989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Recio-Spinoso A, Temchin AN, van Dijk P et al (2005) Wiener-kernel analysis of responses to noise of chinchilla auditory-nerve fibers. J Neurophysiol 93:3615–3634. doi:10.1152/jn.00882.2004

    Article  PubMed  Google Scholar 

  • Recio-Spinoso A, Narayan S, Ruggero M (2009) Basilar membrane responses to noise at a basal site of the chinchilla cochlea: quasi-linear filtering. J Assoc Res Otolaryngol 10:471–484. doi:10.1007/s10162-009-0172-0

    Article  PubMed Central  PubMed  Google Scholar 

  • Rhode WS, Smith PH (1985) Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers. Hear Res 18:159–168. doi:10.1016/0378-5955(85)90008-5

    Article  CAS  PubMed  Google Scholar 

  • Rossant C, Fontaine B, Goodman DFM (2013) Playdoh: a lightweight python library for distributed computing and optimisation. J Comput Sci 4:352–359. doi:10.1016/j.jocs.2011.06.002

    Article  Google Scholar 

  • Ruggero MA, Temchin AN (2007) Similarity of traveling-wave delays in the hearing organs of humans and other tetrapods. J Assoc Res Otolaryngol 8:153–166. doi:10.1007/s10162-007-0081-z

    Article  PubMed Central  PubMed  Google Scholar 

  • Schwartz O, Pillow JW, Rust NC, Simoncelli EP (2006) Spike-triggered neural characterization. J Vis. doi:10.1167/6.4.13

    PubMed  Google Scholar 

  • Shera CA (2001) Frequency glides in click responses of the basilar membrane and auditory nerve: their scaling behavior and origin in traveling-wave dispersion. J Acoust Soc Am 109:2023–2034

    Article  CAS  PubMed  Google Scholar 

  • Shera CA, Guinan JJ Jr (2003) Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning. J Acoust Soc Am 113:2762–2772

    Article  PubMed  Google Scholar 

  • Tan Q, Carney LH (2003) A phenomenological model for the responses of auditory-nerve fibers. II. Nonlinear tuning with a frequency glide. J Acoust Soc Am 114:2007

    Article  PubMed  Google Scholar 

  • Tan X, Beurg M, Hackney C et al (2013) Electrical tuning and transduction in short hair cells of the chicken auditory papilla. J Neurophysiol 109:2007–2020. doi:10.1152/jn.01028.2012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Temchin AN, Recio-Spinoso A, van Dijk P, Ruggero MA (2005) Wiener kernels of chinchilla auditory-nerve fibers: verification using responses to tones, clicks, and noise and comparison with basilar-membrane vibrations. J Neurophysiol 93:3635–3648. doi:10.1152/jn.00885.2004

    Article  PubMed Central  PubMed  Google Scholar 

  • Temchin AN, Recio-Spinoso A, Ruggero MA (2011) Timing of cochlear responses inferred from frequency-threshold tuning curves of auditory-nerve fibers. Hear Res 272:178–186. doi:10.1016/j.heares.2010.10.002

    Article  PubMed Central  PubMed  Google Scholar 

  • Van der Heijden M, Joris PX (2003) Cochlear phase and amplitude retrieved from the auditory nerve at arbitrary frequencies. J Neurosci 23:9194–9198

    PubMed  Google Scholar 

  • Van der Heijden M, Joris PX (2006) Panoramic measurements of the apex of the cochlea. J Neurosci 26:11462–11473. doi:10.1523/JNEUROSCI.1882-06.2006

    Article  PubMed  Google Scholar 

  • Versteegh CPC, Meenderink SWF, van der Heijden M (2011) Response characteristics in the apex of the gerbil cochlea studied through auditory nerve recordings. J Assoc Res Otolaryngol 12:301–316. doi:10.1007/s10162-010-0255-y

    Article  PubMed Central  PubMed  Google Scholar 

  • Viete S, Peña JL, Konishi M (1997) Effects of interaural intensity difference on the processing of interaural time difference in the owl’s nucleus laminaris. J Neurosci 17:1815–1824

    CAS  PubMed  Google Scholar 

  • Wagner H (2005) Microsecond precision of phase delay in the auditory system of the barn owl. J Neurophysiol 94:1655–1658. doi:10.1152/jn.01226.2004

    Article  PubMed Central  PubMed  Google Scholar 

  • Wagner H, Brill S, Kempter R, Carr CE (2009) Auditory responses in the barn owl’s nucleus laminaris to clicks: impulse response and signal analysis of neurophonic potential. J Neurophysiol 102:1227–1240. doi:10.1152/jn.00092.2009

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Work supported by a European Community Marie Curie fellowship (PIOF-GA-2011-300753) for B.F., by the Deutsche Forschungsgemeinschaft (SFB/TRR31 “Active Hearing”) to CK, by the National Institute of Health (DC007690) to JLP. The authors would like to thanks B. Fischer for helping with the statistics.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand Fontaine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontaine, B., Köppl, C. & Peña, J.L. Reverse Correlation Analysis of Auditory-Nerve Fiber Responses to Broadband Noise in a Bird, the Barn Owl. JARO 16, 101–119 (2015). https://doi.org/10.1007/s10162-014-0494-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-014-0494-4

Keywords

Navigation