Skip to main content
Log in

Muscular dystrophy associated mutations in caveolin-1 induce neurotransmission and locomotion defects in Caenorhabditis elegans

  • Original Paper
  • Published:
Invertebrate Neuroscience

Abstract

Mutations in human caveolin-3 are known to underlie a range of myopathies. The cav-1 gene of Caenorhabditis elegans is a homologue of human caveolin-3 and is expressed in both neurons and body wall muscles. Within the body wall muscle CAV-1 localises adjacent to neurons, most likely at the neuromuscular junction (NMJ). Using fluorescently tagged CAV-1 and pre- and post-synaptic markers we demonstrate that CAV-1 co-localises with UNC-63, a post-synaptic marker, but not with several pre-synaptic markers. To establish a model for human muscular dystrophies caused by dominant-negative mutations in caveolin-3 we created transgenic animals carrying versions of cav-1 with homologous mutations. These animals had increased sensitivity to levamisole, suggesting a role for cav-1 at the NMJ. Animals carrying a deletion in cav-1 show a similar sensitivity. Sensitivity to levamisole and locomotion were also perturbed in animals carrying a dominant-negative cav-1 and a mutation in dynamin, which is a protein known to interact with caveolins. Thus, indicating an interaction between CAV-1 and dynamin at the NMJ and/or in neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson RG (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225

    Article  PubMed  CAS  Google Scholar 

  • Betz RC, Schoser BG, Kasper D, Ricker K, Ramirez A, Stein V, Torbergsen T, Lee YA, Nothen MM, Wienker TF, Malin JP, Propping P, Reis A, Mortier W, Jentsch TJ, Vorgerd M, Kubisch C (2001) Mutations in CAV3 cause mechanical hyperirritability of skeletal muscle in rippling muscle disease. Nat Genet 28:218–219

    Article  PubMed  CAS  Google Scholar 

  • Carlson BM, Carlson JA, Dedkov EI, McLennan IS (2003) Concentration of caveolin-3 at the neuromuscular junction in young and old rat skeletal muscle fibers. J Histochem Cytochem 51:1113–1118

    PubMed  CAS  Google Scholar 

  • Carre-Pierrat M, Grisoni K, Gieseler K, Mariol MC, Martin E, Jospin M, Allard B, Segalat L (2006) The SLO-1 BK channel of Caenorhabditis elegans is critical for muscle function and is involved in dystrophin-dependent muscle dystrophy. J Mol Biol 358:387–395

    Article  PubMed  CAS  Google Scholar 

  • Chalfie M, Sulston JE, White JG, Southgate E, Thomson JN, Brenner S (1985) The neural circuit for touch sensitivity in Caenorhabditis elegans. J Neurosci 5:956–964

    PubMed  CAS  Google Scholar 

  • Clark SG, Shurland DL, Meyerowitz EM, Bargmann CI, van der Bliek AM (1997) A dynamin GTPase mutation causes a rapid and reversible temperature-inducible locomotion defect in C. elegans. Proc Natl Acad Sci USA 94:10438–10443

    Article  PubMed  CAS  Google Scholar 

  • Culetto E, Baylis HA, Richmond JE, Jones AK, Fleming JT, Squire MD, Lewis JA, Sattelle DB (2004) The Caenorhabditis elegans unc-63 gene encodes a levamisole-sensitive nicotinic acetylcholine receptor alpha subunit. J Biol Chem 279:42476–42483

    Article  PubMed  CAS  Google Scholar 

  • Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV (2001) Loss of caveolae vascular dysfunction and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452

    Article  PubMed  CAS  Google Scholar 

  • Fischer D, Schroers A, Blumcke I, Urbach H, Zerres K, Mortier W, Vorgerd M, Schroder R (2003) Consequences of a novel caveolin-3 mutation in a large German family. Ann Neurol 53:233–241

    Article  PubMed  CAS  Google Scholar 

  • Fleming JT, Squire MD, Barnes TM, Tornoe C, Matsuda K, Ahnn J, Fire A, Sulston JE, Barnard EA, Sattelle DB, Lewis JA (1997) Caenorhabditis elegans levamisole resistance genes lev-1 unc-29 and unc-38 encode functional nicotinic acetylcholine receptor subunits. J Neurosci 17:5843–5857

    PubMed  CAS  Google Scholar 

  • Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408:325–330

    Article  PubMed  CAS  Google Scholar 

  • Galbiati F, Razani B, Lisanti MP (2001) Caveolae and caveolin-3 in muscular dystrophy. Trends Mol Med 7:435–441

    Article  PubMed  CAS  Google Scholar 

  • Hedgecock EM, Hall DH (1991) Motor vesicles. Curr Biol 1:77–79

    Article  PubMed  CAS  Google Scholar 

  • Hedgecock EM, Culotti JG, Hall DH (1990) The unc-5 unc-6 and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4:61–85

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Deviez DJ, Martin S, Laval SH, Lo HP, Cooper ST, North KN, Bushby K, Parton RG (2006) Aberrant dysferlin trafficking in cells lacking caveolin or expressing dystrophy mutants of caveolin-3. Hum Mol Genet 15:129–142

    Article  PubMed  CAS  Google Scholar 

  • Herrmann R, Straub V, Blank M, Kutzick C, Franke N, Jacob EN, Lenard HG, Kroger S, Voit T (2000) Dissociation of the dystroglycan complex in caveolin-3-deficient limb girdle muscular dystrophy. Hum Mol Genet 9:2335–2340

    PubMed  CAS  Google Scholar 

  • Hobert O (2002) PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans. Biotechniques 32:728–730

    PubMed  CAS  Google Scholar 

  • Hosono R, Kamiya Y (1991) Additional genes which result in an elevation of acetylcholine levels by mutations in Caenorhabditis elegans. Neurosci Lett 128:243–244

    Article  PubMed  CAS  Google Scholar 

  • Kim YN, Bertics PJ (2002) The endocytosis-linked protein dynamin associates with caveolin-1 and is tyrosine phosphorylated in response to the activation of a noninternalizing epidermal growth factor receptor mutant. Endocrinology 143:1726–1731

    Article  PubMed  CAS  Google Scholar 

  • Lewis JA, Wu CH, Berg H, Levine JH (1980) The genetics of levamisole resistance in the nematode Caenorhabditis elegans. Genetics 95:905–928

    PubMed  CAS  Google Scholar 

  • Lipardi C, Mora R, Colomer V, Paladino S, Nitsch L, Rodriguez-Boulan E, Zurzolo C (1998) Caveolin transfection results in caveolae formation but not apical sorting of glycosylphosphatidylinositol (GPI)-anchored proteins in epithelial cells. J Cell Biol 140:617–626

    Article  PubMed  CAS  Google Scholar 

  • Mariol MC, Martin E, Chambonnier L, Segalat L (2007) Dystrophin-dependent muscle degeneration requires a fully functional contractile machinery to occur in C. elegans. Neuromuscul Disord 17:56–60

    Article  PubMed  Google Scholar 

  • McIntire SL, Reimer RJ, Schuske K, Edwards RH, Jorgensen EM (1997) Identification and characterization of the vesicular GABA transporter. Nature 389:870–876

    Article  PubMed  CAS  Google Scholar 

  • McNally EM, de Sa ME, Duggan DJ, Bonnemann CG, Lisanti MP, Lidov HG, Vainzof M, Passos-Bueno MR, Hoffman EP, Zatz M, Kunkel LM (1998) Caveolin-3 in muscular dystrophy. Hum Mol Genet 7:871–877

    Article  PubMed  CAS  Google Scholar 

  • Minetti C, Sotgia F, Bruno C, Scartezzini P, Broda P, Bado M, Masetti E, Mazzocco M, Egeo A, Donati MA, Volonte D, Galbiati F, Cordone G, Bricarelli FD, Lisanti MP, Zara F (1998) Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat Genet 18:365–368

    Article  PubMed  CAS  Google Scholar 

  • Nguyen M, Alfonso A, Johnson CD, Rand JB (1995) Caenorhabditis elegans mutants resistant to inhibitors of acetylcholinesterase. Genetics 140:527–535

    PubMed  CAS  Google Scholar 

  • Nonet ML, Grundahl K, Meyer BJ, Rand JB (1993) Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell 73:1291–1305

    Article  PubMed  CAS  Google Scholar 

  • Nonet ML, Saifee O, Zhao H, Rand JB, Wei L (1998) Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants. J Neurosci 18:70–80

    PubMed  CAS  Google Scholar 

  • Nurrish S, Segalat L, Kaplan JM (1999) Serotonin inhibition of synaptic transmission: Galpha(0) decreases the abundance of UNC-13 at release sites. Neuron 24:231–242

    Article  PubMed  CAS  Google Scholar 

  • Oh P, McIntosh DP, Schnitzer JE (1998) Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol 141:101–114

    Article  PubMed  CAS  Google Scholar 

  • Parton RG, Richards AA (2003) Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 4:724–738

    Article  PubMed  CAS  Google Scholar 

  • Rand JB, Russell RL (1985) Molecular basis of drug-resistance mutations in C. elegans. Psychopharmacol Bull 21:623–630

    PubMed  CAS  Google Scholar 

  • Rayes D, Flamini M, Hernando G, Bouzat C (2007) Activation of single nicotinic receptor channels from Caenorhabditis elegans muscle. Mol Pharmacol 71:1407–1415

    Article  PubMed  CAS  Google Scholar 

  • Richmond JE, Broadie KS (2002) The synaptic vesicle cycle: exocytosis and endocytosis in Drosophila and C. elegans. Curr Opin Neurobiol 12:499–507

    Article  PubMed  CAS  Google Scholar 

  • Scheel J, Srinivasan J, Honnert U, Henske A, Kurzchalia TV (1999) Involvement of caveolin-1 in meiotic cell-cycle progression in Caenorhabditis elegans. Nat Cell Biol 1:127–129

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Wolde M, Thiele C, Fest W, Kratzin H, Podtelejnikov AV, Witke W, Huttner WB, Soling HD (1999) Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401:133–141

    Article  PubMed  CAS  Google Scholar 

  • Schuske KR, Richmond JE, Matthies DS, Davis WS, Runz S, Rube DA, van der Bliek AM, Jorgensen EM (2003) Endophilin is required for synaptic vesicle endocytosis by localizing synaptojanin. Neuron 40:749–762

    Article  PubMed  CAS  Google Scholar 

  • Simmer F, Tijsterman M, Parrish S, Koushika SP, Nonet ML, Fire A, Ahringer J, Plasterk RH (2002) Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr Biol 12:1317–1319

    Article  PubMed  CAS  Google Scholar 

  • Sulston JE (1983) Neuronal cell lineages in the nematode Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol 48:443–452

    PubMed  Google Scholar 

  • Sulston J, Hodgkin J (1988) Methods. In: The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, New York

  • Takei K, Yoshida Y, Yamada H (2005) Regulatory mechanisms of dynamin-dependent endocytosis. J Biochem (Tokyo) 137:243–247

    CAS  Google Scholar 

  • Tang Z, Okamoto T, Boontrakulpoontawee P, Katada T, Otsuka AJ, Lisanti MP (1997) Identification sequence and expression of an invertebrate caveolin gene family from the nematode Caenorhabditis elegans. Implications for the molecular evolution of mammalian caveolin genes. J Biol Chem 272:2437–2445

    Article  PubMed  CAS  Google Scholar 

  • Towers PR, Edwards B, Richmond JE, Sattelle DB (2005) The Caenorhabditis elegans lev-8 gene encodes a novel type of nicotinic acetylcholine receptor alpha subunit. J Neurochem 93:1–9

    Article  PubMed  CAS  Google Scholar 

  • Towers PR, Lescure P, Baban D, Malek JA, Duarte J, Jones E, Davies KE, Segalat L, Sattelle DB (2006) Gene expression profiling studies on Caenorhabditis elegans dystrophin mutants dys-1(cx-35) and dys-1(cx18). Genomics 88:642–649

    Article  PubMed  CAS  Google Scholar 

  • Vorgerd M, Bolz H, Patzold T, Kubisch C, Malin JP, Mortier W (1999) Phenotypic variability in rippling muscle disease. Neurology 52:1453–1459

    PubMed  CAS  Google Scholar 

  • Wakabayashi T, Kitagawa I, Shingai R (2004) Neurons regulating the duration of forward locomotion in Caenorhabditis elegans. Neurosci Res 50:103–111

    Article  PubMed  Google Scholar 

  • Woodman SE, Sotgia F, Galbiati F, Minetti C, Lisanti MP (2004) Caveolinopathies: mutations in caveolin-3 cause four distinct autosomal dominant muscle diseases. Neurology 62:538–543

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Jeremy Skepper for advice on dual colour imaging. We are grateful to Jean-Louis Bessereau for plasmid pJL37 and Andrew Fire for transgenic expression vectors. Some strains were obtained from the Caenorhabditis Genetic Centre. This work was supported by the BBSRC (SP and HP). HAB is an MRC Senior Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard A. Baylis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, S., Peterkin, H.S. & Baylis, H.A. Muscular dystrophy associated mutations in caveolin-1 induce neurotransmission and locomotion defects in Caenorhabditis elegans . Invert Neurosci 7, 157–164 (2007). https://doi.org/10.1007/s10158-007-0051-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-007-0051-5

Keywords

Navigation