Skip to main content

Advertisement

Log in

Increased numbers of pre-operative circulating monocytes predict risk of developing cardiac surgery-associated acute kidney injury in conditions requiring cardio pulmonary bypass

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Evaluating patients’ risk for acute kidney injury (AKI) is crucial for positive outcomes following cardiac surgery. Our aims were first to select candidate risk factors from pre- or intra-operative real-world parameters collected from routine medical care and then evaluate potential associations between those parameters and risk of onset of post-operative cardiac surgery-associated AKI (CSA-AKI).

Method

We conducted two cohort studies in Japan. The first was a single-center prospective cohort study (n = 145) to assess potential association between 115 clinical parameters collected from routine medical care and CSA-AKI (≥ Stage1) risk in the population of patients undergoing cardiac surgery involving cardiopulmonary bypass (CPB). To select candidate risk factors, we employed random forest analysis and applied survival analyses to evaluate association strength. In a second retrospective cohort study, we targeted patients undergoing cardiac surgery with CPB (n = 619) and evaluated potential positive associations between CSA-AKI incidence and risk factors suggested by the first cohort study.

Results

Variable selection analysis revealed that parameters in clinical categories such as circulating inflammatory cells, CPB-related parameters, ventilation, or aging were potential CSA-AKI risk factors. Survival analyses revealed that increased counts of pre-operative circulating monocytes and neutrophils were associated with CSA-AKI incidence. Finally, in the second cohort study, we found that increased pre-operative circulating monocyte counts were associated with increased CSA-AKI incidence.

Conclusions

Circulating monocyte counts in the pre-operative state are associated with increased risk of CSA-AKI development. This finding may be useful in stratifying patients for risk of developing CSA-AKI in routine clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The Ethics Committee for Clinical Research at Kumamoto University has placed restrictions on public data sharing because data contain sensitive information.

References

  1. Organization WH. Cardiovascular diseases (CVDs). 2017. https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed 12 Dec 2022.

  2. Yusuf S, Rangarajan S, Teo K, Islam S, Li W, Liu L, et al. Cardiovascular risk and events in 17 low-, middle-, and high-income countries. N Engl J Med. 2014;371(9):818–27. https://doi.org/10.1056/NEJMoa1311890.

    Article  CAS  PubMed  Google Scholar 

  3. Senst B, Kumar A, Diaz RR. Cardiac Surgery. Treasure Island (FL): StatPearls; 2022.

    Google Scholar 

  4. Hobson CE, Yavas S, Segal MS, Schold JD, Tribble CG, Layon AJ, et al. Acute kidney injury is associated with increased long-term mortality after cardiothoracic surgery. Circulation. 2009;119(18):2444–53. https://doi.org/10.1161/CIRCULATIONAHA.108.800011.

    Article  PubMed  Google Scholar 

  5. Grieshaber P, Moller S, Arneth B, Roth P, Niemann B, Renz H, et al. Predicting cardiac surgery-associated acute kidney injury using a combination of clinical risk scores and urinary biomarkers. Thorac Cardiovasc Surg. 2020;68(5):389–400. https://doi.org/10.1055/s-0039-1678565.

    Article  PubMed  Google Scholar 

  6. Priyanka P, Zarbock A, Izawa J, Gleason TG, Renfurm RW, Kellum JA. The impact of acute kidney injury by serum creatinine or urine output criteria on major adverse kidney events in cardiac surgery patients. J Thorac Cardiovasc Surg. 2021;162(1):143-51e7. https://doi.org/10.1016/j.jtcvs.2019.11.137.

    Article  CAS  PubMed  Google Scholar 

  7. Ortega-Loubon C, Fernandez-Molina M, Carrascal-Hinojal Y, Fulquet-Carreras E. Cardiac surgery-associated acute kidney injury. Ann Card Anaesth. 2016;19(4):687–98. https://doi.org/10.4103/0971-9784.191578.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mangano CM, Diamondstone LS, Ramsay JG, Aggarwal A, Herskowitz A, Mangano DT. Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes, and hospital resource utilization. The multicenter study of perioperative ischemia research group. Ann Intern Med. 1998;128(3):194–203. https://doi.org/10.7326/0003-4819-128-3-199802010-00005.

    Article  CAS  PubMed  Google Scholar 

  9. Ozkaynak B, Kayalar N, Gumus F, Yucel C, Mert B, Boyacioglu K, et al. Time from cardiac catheterization to cardiac surgery: a risk factor for acute kidney injury? Interact Cardiovasc Thorac Surg. 2014;18(6):706–11. https://doi.org/10.1093/icvts/ivu023.

    Article  PubMed  Google Scholar 

  10. Kristovic D, Horvatic I, Husedzinovic I, Sutlic Z, Rudez I, Baric D, et al. Cardiac surgery-associated acute kidney injury: risk factors analysis and comparison of prediction models. Interact Cardiovasc Thorac Surg. 2015;21(3):366–73. https://doi.org/10.1093/icvts/ivv162.

    Article  PubMed  Google Scholar 

  11. Joung KW, Jo JY, Kim WJ, Choi DK, Chin JH, Lee EH, et al. Association of preoperative uric acid and acute kidney injury following cardiovascular surgery. J Cardiothorac Vasc Anesth. 2014;28(6):1440–7. https://doi.org/10.1053/j.jvca.2014.04.020.

    Article  CAS  PubMed  Google Scholar 

  12. Ng RR, Chew ST, Liu W, Shen L, Ti LK. Identification of modifiable risk factors for acute kidney injury after coronary artery bypass graft surgery in an Asian population. J Thorac Cardiovasc Surg. 2014;147(4):1356–61. https://doi.org/10.1016/j.jtcvs.2013.09.040.

    Article  PubMed  Google Scholar 

  13. Parolari A, Pesce LL, Pacini D, Mazzanti V, Salis S, Sciacovelli C, et al. Risk factors for perioperative acute kidney injury after adult cardiac surgery: role of perioperative management. Ann Thorac Surg. 2012;93(2):584–91. https://doi.org/10.1016/j.athoracsur.2011.09.073.

    Article  PubMed  Google Scholar 

  14. Huang TM, Wu VC, Young GH, Lin YF, Shiao CC, Wu PC, et al. Preoperative proteinuria predicts adverse renal outcomes after coronary artery bypass grafting. J Am Soc Nephrol. 2011;22(1):156–63. https://doi.org/10.1681/ASN.2010050553.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kumar AB, Suneja M, Bayman EO, Weide GD, Tarasi M. Association between postoperative acute kidney injury and duration of cardiopulmonary bypass: a meta-analysis. J Cardiothorac Vasc Anesth. 2012;26(1):64–9. https://doi.org/10.1053/j.jvca.2011.07.007.

    Article  PubMed  Google Scholar 

  16. Kellum JA, Lameire N, Aspelin P, Barsoum RS, Burdmann EA, Goldstein SL, et al. Kidney disease: improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Supp. 2012;2(1):1–138.

    Google Scholar 

  17. Section 2: AKI Definition. Kidney Int Suppl (2011). 2012;2(1):19–36. https://doi.org/10.1038/kisup.2011.32.

  18. Schrier RW. Need to intervene in established acute renal failure. J Am Soc Nephrol. 2004;15(10):2756–8. https://doi.org/10.1097/01.ASN.0000141324.49873.11.

    Article  PubMed  Google Scholar 

  19. Koo CH, Eun Jung D, Park YS, Bae J, Cho YJ, Kim WH, et al. Neutrophil, lymphocyte, and platelet counts and acute kidney injury after cardiovascular surgery. J Cardiothorac Vasc Anesth. 2018;32(1):212–22. https://doi.org/10.1053/j.jvca.2017.08.033.

    Article  PubMed  Google Scholar 

  20. Li Y, Zou Z, Zhang Y, Zhu B, Ning Y, Shen B, et al. Dynamics in perioperative neutrophil-to-lymphocyte*platelet ratio as a predictor of early acute kidney injury following cardiovascular surgery. Ren Fail. 2021;43(1):1012–9. https://doi.org/10.1080/0886022X.2021.1937220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Joo H, Min SY, Park MS. Association between inflammation-based parameters and prognosis in patients with acute kidney injury. Medicina (Kaunas). 2021. https://doi.org/10.3390/medicina57090936.

    Article  PubMed  Google Scholar 

  22. Ma X, Chen S, Yun Y, Zhao D, Li J, Wu Z, et al. The predictive role of lymphocyte-to-monocyte ratio in acute kidney injury in acute debakey type I aortic dissection. Front Surg. 2021;8:704345. https://doi.org/10.3389/fsurg.2021.704345.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jang HR, Rabb H. Immune cells in experimental acute kidney injury. Nat Rev Nephrol. 2015;11(2):88–101. https://doi.org/10.1038/nrneph.2014.180.

    Article  CAS  PubMed  Google Scholar 

  24. Spoelstra-de Man AM, Smit B, Oudemans-van Straaten HM, Smulders YM. Cardiovascular effects of hyperoxia during and after cardiac surgery. Anaesthesia. 2015;70(11):1307–19. https://doi.org/10.1111/anae.13218.

    Article  CAS  PubMed  Google Scholar 

  25. Moledina DG, Isguven S, McArthur E, Thiessen-Philbrook H, Garg AX, Shlipak M, et al. Plasma monocyte chemotactic protein-1 is associated with acute kidney injury and death after cardiac operations. Ann Thorac Surg. 2017;104(2):613–20. https://doi.org/10.1016/j.athoracsur.2016.11.036.

    Article  PubMed  PubMed Central  Google Scholar 

  26. de Mendonca-Filho HT, Pereira KC, Fontes M, Vieira DA, de Mendonca ML, Campos LA, et al. Circulating inflammatory mediators and organ dysfunction after cardiovascular surgery with cardiopulmonary bypass: a prospective observational study. Crit Care. 2006;10(2):R46. https://doi.org/10.1186/cc4857.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lindholm EE, Aune E, Seljeflot I, Otterstad JE, Kirkeboen KA. Biomarkers of inflammation in major vascular surgery: a prospective randomised trial. Acta Anaesthesiol Scand. 2015;59(6):773–87. https://doi.org/10.1111/aas.12466.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Bellomo R. Cardiac surgery-associated acute kidney injury: risk factors, pathophysiology and treatment. Nat Rev Nephrol. 2017;13(11):697–711. https://doi.org/10.1038/nrneph.2017.119.

    Article  PubMed  Google Scholar 

  29. Schurle A, Koyner JL. CSA-AKI: incidence, epidemiology, clinical outcomes, and economic impact. J Clin Med. 2021. https://doi.org/10.3390/jcm10245746.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Guan C, Li C, Xu L, Zhen L, Zhang Y, Zhao L, et al. Risk factors of cardiac surgery-associated acute kidney injury: development and validation of a perioperative predictive nomogram. J Nephrol. 2019;32(6):937–45. https://doi.org/10.1007/s40620-019-00624-z.

    Article  CAS  PubMed  Google Scholar 

  31. Cummings JH, Antoine JM, Azpiroz F, Bourdet-Sicard R, Brandtzaeg P, Calder PC, et al. PASSCLAIM–gut health and immunity. Eur J Nutr. 2004;43(Suppl 2):1118–73. https://doi.org/10.1007/s00394-004-1205-4.

    Article  CAS  Google Scholar 

  32. Ferenbach DA, Sheldrake TA, Dhaliwal K, Kipari TM, Marson LP, Kluth DC, et al. Macrophage/monocyte depletion by clodronate, but not diphtheria toxin, improves renal ischemia/reperfusion injury in mice. Kidney Int. 2012;82(8):928–33. https://doi.org/10.1038/ki.2012.207.

    Article  CAS  PubMed  Google Scholar 

  33. Nemzek JA, Bolgos GL, Williams BA, Remick DG. Differences in normal values for murine white blood cell counts and other hematological parameters based on sampling site. Inflamm Res. 2001;50(10):523–7. https://doi.org/10.1007/PL00000229.

    Article  CAS  PubMed  Google Scholar 

  34. Lee S, Huen S, Nishio H, Nishio S, Lee HK, Choi BS, et al. Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol. 2011;22(2):317–26. https://doi.org/10.1681/ASN.2009060615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kumar S, Allen DA, Kieswich JE, Patel NS, Harwood S, Mazzon E, et al. Dexamethasone ameliorates renal ischemia-reperfusion injury. J Am Soc Nephrol. 2009;20(11):2412–25. https://doi.org/10.1681/ASN.2008080868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Higashi Y, Noma K, Yoshizumi M, Kihara Y. Endothelial function and oxidative stress in cardiovascular diseases. Circ J. 2009;73(3):411–8. https://doi.org/10.1253/circj.cj-08-1102.

    Article  CAS  PubMed  Google Scholar 

  37. Fichtlscherer S, Rosenberger G, Walter DH, Breuer S, Dimmeler S, Zeiher AM. Elevated C-reactive protein levels and impaired endothelial vasoreactivity in patients with coronary artery disease. Circulation. 2000;102(9):1000–6. https://doi.org/10.1161/01.cir.102.9.1000.

    Article  CAS  PubMed  Google Scholar 

  38. Fichtlscherer S, Breuer S, Schachinger V, Dimmeler S, Zeiher AM. C-reactive protein levels determine systemic nitric oxide bioavailability in patients with coronary artery disease. Eur Heart J. 2004;25(16):1412–8. https://doi.org/10.1016/j.ehj.2004.06.026.

    Article  CAS  PubMed  Google Scholar 

  39. Cruz DN, Ronco C, Katz N. Neutrophil gelatinase-associated lipocalin: a promising biomarker for detecting cardiac surgery-associated acute kidney injury. J Thorac Cardiovasc Surg. 2010;139(5):1101–6. https://doi.org/10.1016/j.jtcvs.2009.11.007.

    Article  CAS  PubMed  Google Scholar 

  40. Koyner JL, Bennett MR, Worcester EM, Ma Q, Raman J, Jeevanandam V, et al. Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery. Kidney Int. 2008;74(8):1059–69. https://doi.org/10.1038/ki.2008.341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wagener G, Gubitosa G, Wang S, Borregaard N, Kim M, Lee HT. Urinary neutrophil gelatinase-associated lipocalin and acute kidney injury after cardiac surgery. Am J Kidney Dis. 2008;52(3):425–33. https://doi.org/10.1053/j.ajkd.2008.05.018.

    Article  CAS  PubMed  Google Scholar 

  42. Parikh CR, Thiessen-Philbrook H, Garg AX, Kadiyala D, Shlipak MG, Koyner JL, et al. Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery. Clin J Am Soc Nephrol. 2013;8(7):1079–88. https://doi.org/10.2215/CJN.10971012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Parr SK, Clark AJ, Bian A, Shintani AK, Wickersham NE, Ware LB, et al. Urinary L-FABP predicts poor outcomes in critically ill patients with early acute kidney injury. Kidney Int. 2015;87(3):640–8. https://doi.org/10.1038/ki.2014.301.

    Article  CAS  PubMed  Google Scholar 

  44. Thakar CV, Arrigain S, Worley S, Yared JP, Paganini EP. A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol. 2005;16(1):162–8. https://doi.org/10.1681/ASN.2004040331.

    Article  PubMed  Google Scholar 

  45. Wijeysundera DN, Karkouti K, Dupuis JY, Rao V, Chan CT, Granton JT, et al. Derivation and validation of a simplified predictive index for renal replacement therapy after cardiac surgery. JAMA. 2007;297(16):1801–9. https://doi.org/10.1001/jama.297.16.1801.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Kiyoka Tabu and Ms. Kazumi Saito for technical assistance. The authors also thank Kenta Uekihara, M.D., Michiaki Sadanaga, M.D., Michiko Nagamine, M.D., and Masakazu Hamaguchi, CE., on the staff of Japanese Red Cross Kumamoto Hospital, for supporting data collection.

Funding

This study was supported by the Project for Elucidating and Controlling Mechanisms of Aging and Longevity of the Japan Agency for Medical Research and Development (AMED) for Yuichi Oike (Grant: JP19gm5010002), and the Japanese Association of Dialysis Physicians for Jun Morinaga (Grant: 2021-12).

Author information

Authors and Affiliations

Authors

Contributions

YO, JM, and YO conceived the idea of the study. YO, JM, and YY conducted data management and statistical analyses. YO, JM, YY, MH, TS, RH, TI, RS, KU, TF and TY contributed to the data collection. YO, JM, EM, HF, TK, HH, MS, TS, MH, MM, and YO contributed to the interpretation of the results. YO, JM, and YO drafted the original manuscript. TK, RS, TF and MM supervised the conduct of this study. All authors reviewed the manuscript draft and revised it critically on intellectual content. All authors approved the final version of the manuscript to be published.

Corresponding authors

Correspondence to Jun Morinaga or Yuichi Oike.

Ethics declarations

Conflict of interest

The authors have no conflict of interest. The results presented in this paper have not been published previously in whole or part.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okadome, Y., Morinaga, J., Yamanouchi, Y. et al. Increased numbers of pre-operative circulating monocytes predict risk of developing cardiac surgery-associated acute kidney injury in conditions requiring cardio pulmonary bypass. Clin Exp Nephrol 27, 329–339 (2023). https://doi.org/10.1007/s10157-022-02313-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-022-02313-x

Keywords

Navigation