Skip to main content
Log in

Hydroxychloroquine suppresses anti-GBM nephritis via inhibition of JNK/p38 MAPK signaling

  • Original article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Anti-glomerular basement membrane (anti-GBM) nephritis, characterized by glomerular crescent formation, requires early treatment because of poor prognosis. Hydroxychloroquine (HCQ) is an antimalarial drug with known immunomodulatory, anti-inflammatory, and autophagy inhibitory effects; it is recognized in the treatment of autoimmune diseases such as systemic lupus erythematosus. However, its effect on anti-GBM nephritis remains unknown. In this study, we investigated the effect of HCQ on anti-GBM nephritis in rats.

Methods

Seven-weeks-old male WKY rats were administered anti-GBM serum to induce anti-GBM nephritis. Either HCQ or vehicle control was administered from day 0 to day 7 after the induction of nephritis. Renal function was assessed by measuring serum creatinine, proteinuria, and hematuria. Renal histological changes were assessed by PAS staining and Masson trichrome staining, and infiltration of macrophages was assessed by ED-1 staining. Mitogen-activated protein kinase (MAPK) was evaluated by western blotting, while chemokine and inflammatory cytokines were evaluated by enzyme-linked immunosorbent assay using urine sample.

Results

HCQ treatment suppressed the decline in renal function. Histologically, extracapillary and intracapillary proliferations were observed from day 1, while fibrinoid necrosis and ED-1 positive cells were observed from day 3. Rats with anti-GBM nephritis showed high levels of monocyte chemotactic protein-1 and tumor necrosis factor-α. These changes were significantly suppressed following HCQ treatment. In addition, HCQ suppressed JNK/p38 MAPK phosphorylation.

Conclusion

HCQ attenuates anti-GBM nephritis by exerting its anti-inflammatory effects via the inhibition of JNK/p38 MAPK activation, indicating its therapeutic potential against anti-GBM nephritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. McAdoo SP, Pusey CD. Anti-glomerular basement membrane disease. Clin J Am Soc Nephrol. 2017;12:1162–72.

    Article  CAS  Google Scholar 

  2. McAdoo SP, Pusey CD. Antiglomerular basement membrane disease. Semin Respir Crit Care Med. 2018;39:494–503.

    Article  Google Scholar 

  3. Turner N, Mason PJ, Brown R, Fox M, Povey S, Rees A, Pusey CD. Molecular cloning of the human goodpasture antigen demonstrates it to be the alpha 3 chain of type IV collagen. J Clin Invest. 1992;89:592–601.

    Article  CAS  Google Scholar 

  4. Kalluri R, Wilson CB, Weber M, Gunwar S, Chonko AM, Neilson EG, Hudson BG. Identification of the alpha 3 chain of type IV collagen as the common autoantigen in antibasement membrane disease and Goodpasture syndrome. J Am Soc Nephrol. 1995;6:1178–85.

    Article  CAS  Google Scholar 

  5. Kalluri R, Gattone VH 2nd, Noelken ME, Hudson BG. The alpha 3 chain of type IV collagen induces autoimmune Goodpasture syndrome. Proc Natl Acad Sci USA. 1994;91:6201–5.

    Article  CAS  Google Scholar 

  6. Kambham N. Crescentic glomerulonephritis: an update on pauci-immune and anti-GBM diseases. Adv Anat Pathol. 2012;19:111–24.

    Article  Google Scholar 

  7. Holdsworth S, Boyce N, Thomson NM, Atkins RC. The clinical spectrum of acute glomerulonephritis and lung haemorrhage (Goodpasture’s syndrome). Q J Med. 1985;55:75–86.

    CAS  Google Scholar 

  8. Isome M, Fujinaka H, Adhikary LP, Kovalenko P, El-Shemi AG, Yoshida Y, Yaoita E, Takeishi T, Takeya M, Naito M, Suzuki H, Yamamoto T. Important role for macrophages in induction of crescentic anti-GBM glomerulonephritis in WKY rats. Nephrol Dial Transplant. 2004;19:2997–3004.

    Article  Google Scholar 

  9. Lan HY, Nikolic-Paterson DJ, Mu W, Atkins RC. Local macrophage proliferation in the pathogenesis of glomerular crescent formation in rat anti-glomerular basement membrane (GBM) glomerulonephritis. Clin Exp Immunol. 1997;110:233–40.

    Article  CAS  Google Scholar 

  10. Lan HY, Nikolic-Paterson DJ, Mu W, Atkins RC. Local macrophage proliferation in the progression of glomerular and tubulointerstitial injury in rat anti-GBM glomerulonephritis. Kidney Int. 1995;48:753–60.

    Article  CAS  Google Scholar 

  11. Beck L, Bomback AS, Choi MJ, Holzman LB, Langford C, Mariani LH, Somers MJ, Trachtman H, Waldman M. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for glomerulonephritis. Am J Kidney Dis. 2013;62:403–41.

    Article  Google Scholar 

  12. Alarcón GS, McGwin G, Bertoli AM, Fessler BJ, Calvo-Alén J, Bastian HM, Vilá LM, Reveille JD, LUMINA Study Group. Effect of hydroxychloroquine on the survival of patients with systemic lupus erythematosus: data from lumina, a multiethnic US cohort (Lumina L). Ann Rheum Dis. 2007;66:1168–72.

    Article  Google Scholar 

  13. Kuznik A, Bencina M, Svajger U, Jeras M, Rozman B, Jerala R. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol. 2011;186:4794–804.

    Article  CAS  Google Scholar 

  14. Sacre K, Criswell LA, McCune JM. Hydroxychloroquine is associated with impaired interferon-alpha and tumor necrosis factor-alpha production by plasmacytoid dendritic cells in systemic lupus erythematosus. Arthritis Res Ther. 2012;14:R155.

    Article  CAS  Google Scholar 

  15. Silva JC, Mariz HA, Rocha LF Jr, Oliveira PS, Dantas AT, Duarte AL, Pitta Ida R, Galdino SL, Pitta MG. Hydroxychloroquine decreases Th17-related cytokines in systemic lupus erythematosus and rheumatoid arthritis patients. Clinics (Sao Paulo). 2013;68:766–71.

    Article  Google Scholar 

  16. Xie B, Lu H, Xu J, Luo H, Hu Y, Chen Y, Geng Q, Song X. Targets of hydroxychloroquine in the treatment of rheumatoid arthritis a network pharmacology study. Joint Bone Spine. 2021;88:105099.

    Article  CAS  Google Scholar 

  17. Pons-Estel GJ, Alarcón GS, McGwin G Jr, Danila MI, Zhang J, Bastian HM, Reveille JD, Vilá LM, Lumina Study Group. Protective effect of hydroxychloroquine on renal damage in patients with lupus nephritis: LXV, data from a multiethnic US cohort. Arthritis Rheum. 2009;61:830–9.

    Article  CAS  Google Scholar 

  18. Liu LJ, Yang YZ, Shi SF, Bao YF, Yang C, Zhu SN, Sui GL, Chen YQ, Lv JC, Zhang H. Effects of hydroxychloroquine on proteinuria in IgA nephropathy: a randomized controlled trial. Am J Kidney Dis. 2019;74:15–22.

    Article  CAS  Google Scholar 

  19. Wu CL, Chang CC, Kor CT, Yang TH, Chiu PF, Tarng DC, Hsu CC. Hydroxychloroquine use and risk of CKD in patients with rheumatoid arthritis. Clin J Am Soc Nephrol. 2018;13:702–9.

    Article  CAS  Google Scholar 

  20. Kohda T, Okada S-I, Hayashi A, Kanzaki S, Ninomiya Y, Taki M, Sado Y. High nephritogenicity of monoclonal antibodies belonging to IgG2a and IgG2b subclasses in rat anti-GBM nephritis. Kidney Int. 2004;66:177–86.

    Article  CAS  Google Scholar 

  21. Harris VM. Protein detection by simple western analysis. Methods Mol Biol. 2015;1312:465–8.

    Article  Google Scholar 

  22. Salazar-Mather TP, Lewis CA, Biron CA. Type I interferons regulate inflammatory cell trafficking and macrophage inflammatory protein 1 alpha delivery to the liver. J Clin Invest. 2002;110:321–30.

    Article  CAS  Google Scholar 

  23. Parameswaran N, Patial S. Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr. 2010;20:87–103.

    Article  CAS  Google Scholar 

  24. Stambe C, Atkins RC, Hill PA, Nikolic-Paterson DJ. Activation and cellular localization of the p38 and JNK MAPK pathways in rat crescentic glomerulonephritis. Kidney Int. 2003;64:2121–32.

    Article  CAS  Google Scholar 

  25. Takaishi H, Taniguchi T, Takahashi A, Ishikawa Y, Yokoyama M. High glucose accelerates MCP-1 production via p38 MAPK in vascular endothelial cells. Biochem Biophys Res Commun. 2003;305:122–8.

    Article  CAS  Google Scholar 

  26. Fujinaka H, Yamamoto T, Takeya M, Feng L, Kawasaki K, Yaoita E, Kondo D, Wilson CB, Uchiyama M, Kihara I. Suppression of anti-glomerular basement membrane nephritis by administration of anti-monocyte chemoattractant protein-1 antibody in WKY rats. J Am Soc Nephrol. 1997;8:1174–8.

    Article  CAS  Google Scholar 

  27. Han Y, Ma FY, Tesch GH, Manthey CL, Nikolic-Paterson DJ. c-fms blockade reverses glomerular macrophage infiltration and halts development of crescentic anti-GBM glomerulonephritis in the rat. Lab Invest. 2011;91:978–91.

    Article  CAS  Google Scholar 

  28. Yang YL, Liu M, Cheng X, Li WH, Zhang SS, Wang YH, Du GH. Myricitrin blocks activation of NF-κB and MAPK signaling pathways to protect nigrostriatum neuron in LPS-stimulated mice. J Neuroimmunol. 2019;337: 577049.

    Article  CAS  Google Scholar 

  29. Li R, Lin H, Ye Y, Xiao Y, Xu S, Wang J, Wang C, Zou Y, Shi M, Liang L, Xu H. Attenuation of antimalarial agent hydroxychloroquine on TNF-α-induced endothelial inflammation. Int Immunopharmacol. 2018;63:261–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms. Ryoko Yamamoto for her excellent experimental assistance.

Funding

This research received no specific grants from any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoko Obata.

Ethics declarations

Conflict of interest

The authors have declared that they have no conflict of interest exists.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted (Approval number 1506261242-8).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torigoe, M., Obata, Y., Inoue, H. et al. Hydroxychloroquine suppresses anti-GBM nephritis via inhibition of JNK/p38 MAPK signaling. Clin Exp Nephrol 27, 110–121 (2023). https://doi.org/10.1007/s10157-022-02285-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-022-02285-y

Keywords

Navigation