Skip to main content

Advertisement

Log in

Renal infiltration of immunocompetent cells: cause and effect of sodium-sensitive hypertension

  • Review Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

This review examines the participation of immunocompetent cells that accumulate in tubulointerstitial areas of the kidney in the pathogenesis of sodium-sensitive hypertension. Tubulointerstitial inflammation is a universal feature in experimental models of sodium-sensitive hypertension, and the suppression of inflammation and its constant companions, oxidative stress and renal angiotensin II activity, ameliorates or prevents hypertension. Human studies also support the association between renal inflammation and hypertension. The proinflammatory effects of a high sodium diet and the mechanisms by which renal inflammation induces sodium retention are discussed. It is suggested that autoimmune reactivity may play a role in the development and maintenance of renal inflammation in hypertensive states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cirillo M, Capasso G, Di Leo VA, De Santo NG. A history of salt. Am J Nephrol. 1994;14:426–31.

    Article  PubMed  CAS  Google Scholar 

  2. Hay JH. The significance of a raised blood pressure. Br Med J. 1931;2:43–7.

    Article  Google Scholar 

  3. Moser M. Historical perspectives on the management of hypertension. J Clin Hypertens. 2006;8(8 Suppl 2):15–20.

    Article  Google Scholar 

  4. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation and Treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289:2560–72.

    Article  PubMed  CAS  Google Scholar 

  5. Staessen JA, Wang J, Bianchi G, Birkenhäger WH. Essential hypertension. Lancet. 2003;361:1629–41.

    Article  PubMed  Google Scholar 

  6. Alderman MH. Dietary sodium and cardiovascular health in hypertensive patients—the case against universal sodium restriction. J Am Soc Nephrol. 2004;15(Suppl 1):S47–50.

    Article  PubMed  CAS  Google Scholar 

  7. He FJ, MacGregor GA. A comprehensive review of salt and health and current experience of worldwide salt reduction programmes. J Hum Hypertens. 2009;23:363–84.

    Article  PubMed  CAS  Google Scholar 

  8. Rodriguez-Iturbe B, Romero F, Johnson RJ. Pathophysiologic mechanisms of salt-dependent hypertension. Am J Kidney Dis. 2007;50:655–72.

    Article  PubMed  Google Scholar 

  9. Weinberger MH, Miller JZ, Luft FC, Grim CE, Fineberg NS. Definitions and characteristics of sodium sensitivity and blood pressure resistance. Hypertension. 1986;8(6 Part 2):II127–34.

    PubMed  CAS  Google Scholar 

  10. Morimoto A, Uzu T, Fujii T, Nishimura M, Kuroda S, Nakamura S, et al. Sodium sensitivity and cardiovascular events in patients with essential hypertension. Lancet. 1997;350:1734–7.

    Article  PubMed  CAS  Google Scholar 

  11. Sullivan JM. Salt sensitivity. Definition, conception, methodology, and long-term issues. Hypertension. 1991;17(Suppl 1):161–8.

    Google Scholar 

  12. Weinberger MH, Fineberg NS, Fineberg SE, Weinberger M. Salt sensitivity, pulse pressure and death in normal and hypertensive humans. Hypertension. 2001;37(2 part 2):429–32.

    PubMed  CAS  Google Scholar 

  13. Weinberg M, Fineberg N. Sodium and volume sensitivity of blood pressure. Age and pressure change over time. Hypertension. 1991;18:67–71.

    Google Scholar 

  14. Rodriguez-Iturbe B. The role of immunocompetent cell renal infiltration the pathogenesis of arterial hypertension. Nefrología. 2008;28:483–92.

    PubMed  CAS  Google Scholar 

  15. Ruiz-Ortega M, Esteban V, Ruperez M, Sanchez-Lopez E, Rodriguez-Vita J, Carvajal G, et al. Renal and vascular hypertension-induced inflammation: role of angiotensin II. Curr Opin Nephrol Hypertens. 2006;15:159–66.

    Article  PubMed  CAS  Google Scholar 

  16. Bendich A, Belisle EH, Strausser HR. Immune system modulation and its effects on blood pressure of the spontaneously hypertensive male and female rat. Biochem Biophys Res Commun. 1981;99:600–7.

    Article  PubMed  CAS  Google Scholar 

  17. Khraibi AA, Norman RA Jr, Dzielak DJ. Chronic immunosuppression attenuates hypertension in Okamoto spontaneously hypertensive rats. Am J Physiol. 1984;247(16):H722–6.

    PubMed  CAS  Google Scholar 

  18. Rodríguez-Iturbe B, Quiroz Y, Nava M, Bonet L, Chavez M, Herrera-Acosta J, et al. Reduction of renal immune cell infiltration results in blood pressure control in genetically hypertensive rats. Am J Physiol Renal Physiol. 2002;282:F191–201.

    PubMed  Google Scholar 

  19. Rodríguez-Iturbe B, Zhan C-D, Quiroz Y, Sindhu RK, Vaziri ND. Antioxidant-rich diet improves hypertension and reduces renal immune infiltration in spontaneously hypertensive rats. Hypertension. 2003;41:341–6.

    Article  PubMed  CAS  Google Scholar 

  20. Nava M, Quiroz Y, Vaziri ND, Rodríguez-Iturbe B. Melatonin reduces renal interstitial inflammation and improves hypertension in spontaneously hypertensive rats. Am J Physiol Renal Physiol. 2003;284:F447–54.

    PubMed  CAS  Google Scholar 

  21. Rodríguez-Iturbe B, Ferrebuz A, Vanegas V, Quiroz Y, Mezzano S, Vaziri ND. Early and sustained inhibition of nuclear factor kappa B prevents hypertension in spontaneously hypertensive rats. J Pharmacol Exp Ther. 2005;315:51–7.

    Article  PubMed  CAS  Google Scholar 

  22. Müller DN, Shagdarsuren E, Park JL, Dechend R, Mervaala E, Hampich F, et al. Immunosuppressive treatment protects against angiotensin-II induced renal damage. Am J Pathol. 2002;161:1679–93.

    PubMed  Google Scholar 

  23. Mattson DL, James L, Berdan EA, Meister CJ. Immune suppression attenuates hypertension and renal disease in Dahl salt-hypertensive rats. Hypertension. 2006;48:149–56.

    Article  PubMed  CAS  Google Scholar 

  24. Tian N, Gu JW, Braddy SJ, Rose RA, Hughson MD, Manning RD Jr. Immune suppression prevents renal damage and dysfunction and reduces arterial pressure in salt-sensitive hypertension. Am J Physiol Heart Circ Physiol. 2007;292:H1018–25.

    Article  PubMed  CAS  Google Scholar 

  25. Bataillard P, Freiche J-C, Vincent M, Touraine J-L, Sassard JU. Effects of neonatal thymectomy on blood pressure and immunological characteristics of the genetically hypertensive rats of the Lyon strain. J Hypertens. 1986;4(Suppl 3):5455–67.

    Google Scholar 

  26. Svendsen JG. Spontaneous hypertension and hypertensive vascular disease in the NZB strain of mice. Acta Pathol Microbiol Scand (A). 1977;85(3):261–8.

    Google Scholar 

  27. Sela S, Mazor R, Amsalam M, Yagil C, Yagil Y, Kristal B. Primed polymorphonuclear leukocytes, oxidative stress and inflammation antecede hypertension in the Sabra rat. Hypertension. 2004;44:764–9.

    Article  PubMed  CAS  Google Scholar 

  28. Gianella A, Nobili E, Abbate M, Zoja C, Gelosa P, Mussoni L, et al. Rosuvastatin treatment prevents progressive kidney inflammation and fibrosis in stroke-prone rats. Am J Pathol. 2007;170:1165–77.

    Article  PubMed  CAS  Google Scholar 

  29. Rodriguez-Iturbe B, Sepassi L, Quiroz Y, Ni Z, Wallace DC, Vaziri ND. Association of mitochondrial SOD deficiency with salt-sensitive hypertension and accelerated renal senescence. J Appl Physiol. 2007;102:255–60.

    Article  PubMed  CAS  Google Scholar 

  30. Stewart T, Jung FF, Manning J, Vehaskari VM. Kidney immune cell infiltration and oxidative stress contribute to prenatally programmed hypertension. Kidney Int. 2005;68:2180–8.

    Article  PubMed  CAS  Google Scholar 

  31. Norman RA Jr, Galloway PG, Dzielak DJ, Huang M. Mechanisms of partial renal infarct hypertension. J Hypertens. 1988;6:397–403.

    Article  PubMed  Google Scholar 

  32. Hilgers KF, Hartner A, Porst M, Veelken R, Mann JFE. Angiotensin II type 1 receptor blockade prevents lethal malignant hypertension: relation to kidney inflammation. Circulation. 2001;104:1436–40.

    Article  PubMed  CAS  Google Scholar 

  33. Vanegas V, Ferrebuz A, Quiroz Y, Rodríguez-Iturbe B. Hypertension in page (cellophane wrapped) kidney is due to interstitial nephritis. Kidney Int. 2005;68:1161–70.

    Article  PubMed  Google Scholar 

  34. Bravo Y, Quiroz Y, Ferrebuz A, Vaziri ND, Rodríguez-Iturbe B. Mycophenolate mofetil administration reduces renal inflammation, oxidative stress and arterial pressure in rats with lead-induced hypertension. Am J Physiol Renal Physiol. 2007;297:F616–23.

    Article  CAS  Google Scholar 

  35. Fujihara CK, Malheiros DM, Zatz R, Noronha IL. Mycophenolate mofetil attenuates renal injury in the rat remnant kidney. Kidney Int. 1998;54:1510–9.

    Article  PubMed  CAS  Google Scholar 

  36. Romero F, Rodríguez-Iturbe B, Parra G, González L, Herrera-Acosta J, Tapia E. Mycophenolate mofetil prevents the progressive renal failure induced by 5/6 renal ablation in rats. Kidney Int. 1999;55:945–55.

    Article  PubMed  CAS  Google Scholar 

  37. Remuzzi G, Zoja C, Gagliardini E, Corna D, Abbate M, Benigni A. Combining an antiproteinuric approach with mycophenolate mofetil fully suppresses progressive nephropathy of experimental animals. J Am Soc Nephrol. 1999;10:1542–9.

    PubMed  CAS  Google Scholar 

  38. Svendsen JG. Spontaneous hypertension and hypertensive vascular disease in the NZB strain of mice. Acta Pathol Microbiol Scand (A). 1977;85:261–8.

    Google Scholar 

  39. Beswick RA, Zhang H, Marable D, Catravas JD, Hill WD, Webb RC. Long-term antioxidant administration attenuates mineralocorticoid hypertension and renal inflammatory response. Hypertension. 2001;37:781–6.

    PubMed  CAS  Google Scholar 

  40. Ray PE, Suga S, Liu XH, Huang X, Johnson RJ. Chronic potassium depletion induces renal injury, salt sensitivity, and hypertension in young rats. Kidney Int. 2001;59:1850–8.

    Article  PubMed  CAS  Google Scholar 

  41. Suga S, Mazzali M, Ray PE, Kang DH, Johnson RJ. Angiotensin II type 1 receptor blockade ameliorates tubulointerstitial injury induced by chronic potassium deficiency. Kidney Int. 2002;61:951–8.

    Article  PubMed  CAS  Google Scholar 

  42. Rodríguez-Iturbe B, Pons H, Quiroz Y, Gordon K, Rincón J, Chávez M, et al. Mycophenolate mofetil prevents salt-sensitive hypertension resulting from angiotensin II exposure. Kidney Int. 2001;59:2222–32.

    PubMed  Google Scholar 

  43. Lee DL, Sturgis LC, Labazi H, Osborne JB Jr, Fleming C, Pollock JS, et al. Angiotensin II hypertension in attenuated in interleukin-g knockout mice. Am J Physiol Heart Circ Physiol. 2006;290:H935–40.

    Article  PubMed  CAS  Google Scholar 

  44. Quiroz Y, Pons H, Gordon Kl, Rincón J, Chávez M, Parra G, et al. Mycophenolate mofetil prevents the salt-sensitive hypertension resulting from short-term nitric oxide síntesis inhibition. Am J Physiol Renal Physiol. 2002;281:F38–47.

    Google Scholar 

  45. Alvarez V, Quiroz Y, Nava M, Pons H, Rodríguez-Iturbe B. Overload proteinuria is followed by salt-sensitive hypertension caused by renal infiltration of immune cells. Am J Physiol Renal Physiol. 2002;283:F1132–41.

    PubMed  Google Scholar 

  46. Rodriguez-Iturbe B, Quiroz Y, Kim CH, Vaziri ND. Hypertension induced by aortic coarctation above the renal arteries is associated with immune cell infiltration of the kidneys. Am J Hypertens. 2005;18:1449–56.

    Article  PubMed  CAS  Google Scholar 

  47. Johnson RJ, Gordon KL, Suga S, Duijvestijn AM, Griffin K, Bidani A. Renal injury in salt-sensitive hypertensionafter exposure to catecholamines. Hypertension. 1999;34:151–9.

    PubMed  CAS  Google Scholar 

  48. Andoh TF, Johnson RJ, Lam T, Bennett WM. Subclinical renal injury induced by transient cyclosporine exposure is associated with salt-sensitive hypertension. Am J Transplant. 2001;1:222–7.

    Article  PubMed  CAS  Google Scholar 

  49. Herrera J, Ferrebuz A, MacGregor EG, Rodriguez-Iturbe B. Mycophenolate mofetil treatment improves hypertension in patients with psoriasis and rheumatoid arthritis. J Am Soc Nephrol. 2006;17(Suppl 3):S218–25.

    Article  PubMed  CAS  Google Scholar 

  50. Hughson MD, Gobe GC, Hoy WE, Manning RD Jr, Douglas-Denton R, Bertram JF. Associations of glomerular number and birth weight with clinicopathological features of African Americans and whites. Am J Kidney Dis. 2008;52:18–28.

    Article  PubMed  Google Scholar 

  51. Gu JW, Tian N, Shparago M, Tan W, Bailey AP, Manning RD Jr. Renal NF(kappa)B activation and TNF(alpha) up-regulation correlate with salt-sensitive hypertension in Dahl salt sensitive rats. Am J Physiol Regul Integr Comp Physiol. 2006;291:R1817–24.

    PubMed  CAS  Google Scholar 

  52. Ying WZ, Sanders PW. Dietary salt modulates renal production of transforming growth factor-beta in rats. Am J Physiol Renal Physiol. 1998;4 Pt 274(2):F635–41.

    Google Scholar 

  53. Sanders PW. Salt intake, endothelial cell signaling, and progression of kidney disease. Hypertension. 2004;43:142–6.

    Article  PubMed  CAS  Google Scholar 

  54. Zacchigna L, Vecchione C, Notte A, Cordenonsi M, Dupont S, Maretto S, et al. Emilin1 links TGF-beta maturation to blood pressure homeostasis. Cell. 2006;124:2–929.

    Article  CAS  Google Scholar 

  55. Kitiyakara C, Chabrashvili T, Chen Y, Blau J, Karber A, Aslam S, et al. Salt intake, oxidative stress and renal expression of NADPH oxidase and superoxide dismutase. J Am Soc Nephrol. 2003;14:2775–82.

    Article  PubMed  CAS  Google Scholar 

  56. Ni Z, Vaziri ND. Effect of salt loading on nitric oxide synthase expression in normotensive rats. Am J Hypertens. 2001;14:155–63.

    Article  PubMed  CAS  Google Scholar 

  57. Zewde T, Wu F, Mattson DL. Influence of dietary NaCl on l-arginine transport in the renal medulla. Am J Physiol Regul Integr Comp Physiol. 2004;286:R89–93.

    PubMed  CAS  Google Scholar 

  58. Gu JW, Anand V, Shek EW, Moore MC, Brady AL, Kelly WC, et al. Sodium induces hypertrophy of cultured myocardial myoblasts and vascular smooth muscle cells. Hypertension. 1998;31:1083–7.

    PubMed  CAS  Google Scholar 

  59. Thomson SC, Deng A, Wead L, Richter K, Blantz RC, Vallon V. An unexpected role for angiotensin II in the link between dietary salt and proximal reabsorption. J Clin Invest. 2006;116:1110–6.

    Article  PubMed  CAS  Google Scholar 

  60. Chandramohan G, Bai Y, Norris K, Rodriguez-Iturbe B, Vaziri ND. Effects of dietary salt on angiotensin system, NAD(P)oxidase, COX-2, MCP-1, PAI-1 abd NFkB in salt sensitive and salt resistant rat kidneys. Am J Nephrol. 2008;28:158–67.

    Article  PubMed  CAS  Google Scholar 

  61. Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59:251–87.

    Article  PubMed  CAS  Google Scholar 

  62. Kobori H, Alper AB Jr, Shenava R, Katsurada A, Saito T, Ohashi N, et al. Urinary angiotensinogen as a novel biomarker of the intrarenal renin-angiotensin system status in hypertensive patients. Hypertension. 2009;53:344–50.

    Article  PubMed  CAS  Google Scholar 

  63. Nishiyama A, Seth DM, Navar LG. Renal interstitial fluid concentrations of angiotensins I and II in anesthetized rats. Hypertension. 2002;39:129–34.

    Article  PubMed  CAS  Google Scholar 

  64. Franco M, Martínez F, Quiroz Y, Galicia O, Bautista R, Johnson RJ, et al. Renal angiotensin II concentration and interstitial infiltration of immune cells are correlated with blood pressure levels in salt-sensitive hypertension. Am J Physiol Regul Integr Comp Physiol. 2007;293:R251–6.

    PubMed  CAS  Google Scholar 

  65. Pimenta E, Calhoun DA. Aldosterone, dietary salt and renal disease. Hypertension. 2006;48:209–10.

    Article  PubMed  CAS  Google Scholar 

  66. Nagase M, Matsui H, Shibata S, Gotoda T, Fujita T. Salt-induced nephropathy in obese spontaneously hypertensive rats via paradoxical activation of the mineralocorticoid receptor: role of oxidative stress. Hypertension. 2007;50:877–83.

    Article  PubMed  CAS  Google Scholar 

  67. Nagase M, Fujita T. Mineralocorticoid receptor activation in obesity and hypertension. Hypertens Res. 2009;32:649–57.

    Article  PubMed  CAS  Google Scholar 

  68. Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara W, Tanaka H, et al. Modification of the mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med. 2008;14:1370–6.

    Article  PubMed  CAS  Google Scholar 

  69. Guyton AC, Coleman TG, Wilcox CS. Quantitative analysis of the pathophysiology of hypertension. J Am Soc Nephrol. 1969;10:2248–58.

    Google Scholar 

  70. Guyton AC. Blood pressure control: Special role of the kidney and body fluids. Science. 1991;252:1813–6.

    Article  PubMed  CAS  Google Scholar 

  71. Johnson RJ, Schreiner GF. Hypothesis: the role of acquired tubulointerstitial disease in the pathogenesis of salt-dependent hypertension. Kidney Int. 1997;52:1169–79.

    Article  PubMed  CAS  Google Scholar 

  72. Johnson RJ, Herrera J, Schreiner G, Rodríguez-Iturbe B. Acquired and subtle renal injury as a mechanism for salt-sensitive hypertension: bridging the hypothesis of Goldblatt and Guyton. N Engl J Med. 2002;346:913–23.

    Article  PubMed  CAS  Google Scholar 

  73. Rodriguez-Iturbe B, Johnson RJ. The role inflammatory cells in the kidney in the induction and maintenance of hypertension. Nephrol Dial Transplant. 2006;1:260–3.

    Google Scholar 

  74. Rodriguez-Iturbe B, Vaziri ND. Salt sensitive hypertension: update on novel findings. Nephrol Dial Transplant. 2007;22:992–5.

    Article  PubMed  Google Scholar 

  75. Wilcox CS. Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension? Am J Physiol Regul Integr Comp Physiol. 2005;289:R913–35.

    PubMed  CAS  Google Scholar 

  76. Johnson RJ, Feig DI, Nakagawa T, Sanchez-Lozada LG, Rodriguez-Iturbe B. Pathogenesis of essential hypertension: historical paradigms and modern insights. J Hypertens. 2008;26:381–91.

    Article  PubMed  CAS  Google Scholar 

  77. Makino A, Skelton MM, Zou AP, Roman RJ, Cowley AW Jr. Increased renal medullary oxidative stress produces hypertension. Hypertension. 2002;39:667–72.

    Article  PubMed  CAS  Google Scholar 

  78. Cowley AW. Renal medullary oxidative stress, pressure-natriuresis and hypertension. Hypertension. 2008;52:777–86.

    Article  PubMed  CAS  Google Scholar 

  79. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007;204:2449–60.

    Article  PubMed  CAS  Google Scholar 

  80. Hoch NE, Guzik TJ, Chen W, Deans T, Maalouf SA, Gratze P, et al. Regulation of T-cell function by endogenously produced angiotensin II. Am J Physiol Regul Integr Comp Physiol. 2009;296:R208–16.

    PubMed  CAS  Google Scholar 

  81. Vaziri ND, Rodriguez-Iturbe B. Mechanisms of disease: oxidative stress and inflammation in the pathogenesis of hypertension. Nat Clin Prac Nephrol. 2006;2:582–93.

    Article  CAS  Google Scholar 

  82. Rodriguez-Iturbe B, Vaziri ND, Herrera-Acosta J, Johnson RJ. Oxidative stress, renal infiltration of immune cells and salt-sensitive hypertension: all for one and one for all. Am J Physiol Renal Physiol. 2004;286:F606–16.

    Article  PubMed  CAS  Google Scholar 

  83. Kaufmann SHE. Heat shock proteins and the immune response. Immunol Today. 1990;11:129–36.

    Article  PubMed  CAS  Google Scholar 

  84. Young RA. Stress proteins and immunology. Ann Rev Immunol. 1990;8:401–20.

    Article  CAS  Google Scholar 

  85. Xu Q, Li DG, Holbrook NJ, Udelsman R. Acute hypertension induces heat-shock protein 70 gene expression in rat aorta. Circulation. 1995;92:1223–9.

    PubMed  CAS  Google Scholar 

  86. Blake MJ, Klevay LM, Halas ES, Bode AM. Blood pressure and heat shock protein expression in response to acute and chronic stress. Hypertension. 1995;25(4 Pt 1):539–44.

    PubMed  CAS  Google Scholar 

  87. Chang J, Wasser JS, Cornelussen RN, Knowlton AA. Activation of heat-shock factor by stretch-activated channels in rat hearts. Circulation. 2001;104:209–14.

    Article  PubMed  CAS  Google Scholar 

  88. Hamet P, Malo D, Hashimoto T, Tremblay J. Heat stress genes in hypertension. J Hypertens Suppl. 1990;8:S47–52.

    Article  PubMed  CAS  Google Scholar 

  89. Lodwick D, Kaiser MA, Harris J, Privat P, Vincent M, Sassard J, et al. Failure of the heat-shock protein 70 locus to cosegregate with blood pressure in spontaneously hypertensive rat × Wistar-Kyoto rat cross. J Hypertens. 1993;11:1047–51.

    Article  PubMed  CAS  Google Scholar 

  90. Li J-X, Tang B-P, Sun H-P, Feng M, Cheng Z-H, Niu W-Q. Interacting contribution of the five polymorphisms in three genes of Hsp70 family to essential hypertension in Uygur ethnicity. Cell Stress Chaperones. 2009;14:355–62.

    Article  PubMed  CAS  Google Scholar 

  91. Ishizaka N, Aizawa T, Ohno M, Usui Si S, Mori I, Tang SS, et al. Regulation and localization of HSP70 and HSP25 in the kidney of rats undergoing long-term administration of angiotensin II. Hypertension. 2002;39:122–8.

    Article  PubMed  CAS  Google Scholar 

  92. Bravo J, Quiroz Y, Pons H, Parra G, Herrera-Acosta J, Johnson RJ, et al. Vimentin and heat shock protein expression are induced in the kidney by angiotensin and by nitric oxide inhibition. Kidney Int. 2003;64(suppl 86):S46–51.

    Article  Google Scholar 

  93. Parra G, Quiroz Y, Salazar J, Bravo Y, Pons H, Chavez M, et al. Experimental induction of salt-sensitive hypertension is associated with lymphocyte proliferative response to HSP70. Kidney Int Suppl. 2008;Suppl 111:S55–9.

    Google Scholar 

  94. House SD, Guidon PT Jr, Perdrizet GA, Rewinski M, Kyriakos R, Bockman RS, et al. Effects of heat shock, stannous chloride, and gallium nitrate on the rat inflammatory response. Cell Stress Chaperones. 2001;6:164–71.

    Article  PubMed  CAS  Google Scholar 

  95. van Eden W, Koets A, van Kooten P, Prakken B, van der Zee R. Immunopotentiating heat shock proteins: negotiators between innate danger and control of autoimmunity. Vaccine. 2003;21:897–901.

    Article  PubMed  Google Scholar 

  96. Alvarez V, Nava M, Quiroz Y, Chavez M, Herrera-Acosta J, Johnson RJ, Rodríguez-Iturbe B. Hyperuricemia induces salt sensitive hypertension (SSHTA) that may be prevented by reduction of tubulointerstitial inflammatory infiltrate. J Am Soc Nephrol. 2002;13:328A (abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo Rodriguez-Iturbe.

About this article

Cite this article

Rodriguez-Iturbe, B. Renal infiltration of immunocompetent cells: cause and effect of sodium-sensitive hypertension. Clin Exp Nephrol 14, 105–111 (2010). https://doi.org/10.1007/s10157-010-0268-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-010-0268-1

Keywords

Navigation