Skip to main content

Advertisement

Log in

Current status of AYA-generation breast cancer: trends worldwide and in Japan

  • Invited Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Breast cancer (BC) is the most common cancer worldwide among women. In Japan, the incidence of BC gradually increased. The recent number of adolescent and young adult (AYA)-BC patients is approximately 4,000–5,000 every year, accounting for 5% of all BC cases. BC in young people has been attracting attention since Japan's third basic plan to promote cancer control programs incorporated cancer control measures for pediatric (age ≤ 14 years) and adolescent and young adult (AYA)-generation (age 15–39 years) cancers in 2018. Attention is needed to detect AYA-BC because of the presence of dense breasts. AYA-BC patients are clinically characterized by larger tumor size, more lymph node metastases, advanced stages, and a higher rate of aggressive phenotypes, such as triple-negative or HER2-positive subtypes, and are strongly associated with family history and genetic germline alterations, including hereditary breast and ovarian cancers. Given that AYA-BC patients show a poorer prognosis than older BC patients, they often require intensive therapies, including surgery, radiation, chemotherapy, and endocrine therapy. We must solve many survivorship-associated problems in AYA-BC patients, including fertility preservation, comorbidity after treatment, and long-term follow-up. Under these circumstances, national and local governments and various academic societies have started addressing these problems by formulating laws and guidelines, establishing medical systems, and offering financial support to conquer cancer and maintain a better quality of life. This review summarizes the current trends of AYA-BC worldwide and in Japan. Further Japan-specific data on AYA-BC are required to clarify its characteristics and improve prognosis and survivorship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE et al (2021) Cancer statistics, 2021. CA Cancer J Clin 71:7–33

    Article  PubMed  Google Scholar 

  2. National Cancer Center (2021) Center for cancer control and information services. https://ganjoho.jp/public/index.html. Accessed Sept 2021

  3. Ministry of Health, Labour and Welfare (2018) The third basic plan to promote cancer control programs. https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000183313.html. Accessed Sept 2021

  4. Inoue I, Nakamura F, Matsumoto K et al (2017) Cancer in adolescents and young adults: national incidence and characteristics in Japan. Cancer Epidemiol 51:74–80

    Article  PubMed  Google Scholar 

  5. Gupta S, Harper A, Ruan Y et al (2020) International trends in the incidence of cancer among adolescents and young adults. J Natl Cancer Inst 112:1105–1117

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bleyer A, Barr R, Hayes-Lattin B et al (2008) The distinctive biology of cancer in adolescents and young adults. Nat Rev Cancer 8:288–298

    Article  CAS  PubMed  Google Scholar 

  7. Anders CK, Johnson R, Litton J et al (2009) Breast cancer before age 40 years. Semn Oncol 36:237–249

    Article  Google Scholar 

  8. Gewefel H, Salhia B (2014) Breast cancer in adolescent and young adult women. Clin Breast Cancer 14:390–395

    Article  PubMed  Google Scholar 

  9. Hayashi N, Kumamaru H, Isozumi U et al (2020) Annual report of the Japanese breast cancer registry for 2017. Breast Cancer 27:803–809

    Article  PubMed  Google Scholar 

  10. Copson E, Eccles B, Maishman T et al (2013) Prospective observational study of breast cancer treatment outcomes for UK women aged 18–40 years at diagnosis: the POSH study. J Natl Cancer Inst 105:978–988

    Article  CAS  PubMed  Google Scholar 

  11. Keegan TH, DeRouen MC, Press DJ et al (2012) Occurrence of breast cancer subtypes in adolescent and young adult women. Breast Cancer Res 14:R55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kataoka A, Iwamoto T, Tokunaga E et al (2016) Young adult breast cancer patients have a poor prognosis independent of prognostic clinicopathological factors: a study from the Japanese Breast Cancer Registry. Breast Cancer Res Treat 160:163–172

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kataoka A, Tokunaga E, Masuda N et al (2014) Clinicopathological features of young patients (<35 years of age) with breast cancer in a Japanese Breast Cancer Society supported study. Breast Cancer 21:643–650

    Article  PubMed  Google Scholar 

  14. Hironaka-Mitsuhashi A, Tsuda H, Yoshida M et al (2019) Invasive breast cancers in adolescent and young adult women show more aggressive immunohistochemical and clinical features than those in women aged 40–44 years. Breast Cancer 26:386–396

    Article  PubMed  Google Scholar 

  15. Pharoah PD, Day NE, Duffy S et al (1997) Family history and the risk of breast cancer: a systematic review and meta-analysis. Int J Cancer 71(5):800–809

    Article  CAS  PubMed  Google Scholar 

  16. Collaborative group on hormonal factors in breast cancer (2001) Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without the disease. Lancet 358:1389–1399

    Article  Google Scholar 

  17. Antoniou A, Pharoah PD, Narod S et al (2003) Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72:1117–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dorling L, Carvalho S, Allen J et al (2021) Breast cancer risk genes—association analysis in more than 113,000 women. New Engl J Med 384:428–439

    Article  CAS  PubMed  Google Scholar 

  19. Hu C, Hart SN, Gnanaolivu R et al (2021) A population-based study of genes previously implicated in breast cancer. New Engl J Med 384:440–451

    Article  PubMed  Google Scholar 

  20. Reiner AS, Sisti J, John EM et al (2018) Breast cancer family history and contralateral breast cancer risk in young women: an update from the women’s environmental cancer and radiation epidemiology study. J Clin Oncol 36:1513–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Johnson RH, Hu P, Fan C et al (2015) Gene expression in “young adult type” breast cancer: a retrospective analysis. Oncotarget 6:13688–13702

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ogawa H, Kato I, Tominaga S (1985) Family history of cancer among cancer patients. Jpn J Cancer Res 76:113–118

    CAS  PubMed  Google Scholar 

  23. Kaneyasu T, Mori S, Yamauchi H et al (2020) Prevalence of disease-causing genes in Japanese patients with BRCA1/2-wildtype hereditary breast and ovarian cancer syndrome. NPJ Breast Cancer 6:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Momozawa Y, Iwasaki Y, Parsons MT et al (2018) Germline pathogenic variants of 11 breast cancer genes in 7051 Japanese patients and 11,241 controls. Nature Commun 9:4083

    Article  CAS  Google Scholar 

  25. Fukushima Y (2017) Genetic counseling of HBOC and Japanese organization of HBOC. Gan To Kagaku Ryoho 44:107–110 ([in Japanese])

    PubMed  Google Scholar 

  26. Japanese organization of hereditary breast and ovarian cancer (2016) https://johboc.jp/. Accessed Sept 2021

  27. Myriad Genetics (2018) BRACAnalysis. https://myriadgenetics.jp/all-products/bracanalysis/breast-cancer/. Accessed Sept 2021

  28. Japanese organization of hereditary breast and ovarian cancer (2021) Guidelines for diagnosis and treatment of hereditary breast and ovarian cancer 2021, vol 2. Kanehara Syuppan, Tokyo

  29. Ministry of Health, Labour and Welfare (2020) Medical fee revision in FY 2020. https://www.mhlw.go.jp/content/12400000/000603943.pdf. Accessed Sept 2021

  30. Brisson J, Diorio C, Mâsse B (2003) Wolfe’s parenchymal pattern and percentage of the breast with mammographic densities: redundant or complementary classifications? Cancer Epidemiol Biomarkers Prev 12:728–732

    PubMed  Google Scholar 

  31. American College of Radiology (2013) ACR BI-RADS® Atlas 5th Edition. https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Bi-Rads. Accessed Sept 2021

  32. Majid AS, de Paredes ES, Doherty RD et al (2003) Missed breast carcinoma: pitfalls and pearls. Radiographics 23:881–895

    Article  PubMed  Google Scholar 

  33. Pinsky RW, Helvie MA (2010) Mammographic breast density: effect on imaging and breast cancer risk. JNCCN 8:1157–1164

    PubMed  Google Scholar 

  34. Nagao Y, Kawaguchi Y, Sugiyama Y et al (2003) Relationship between mammographic density and the risk of breast cancer in Japanese women: a case-control study. Breast Cancer 10:228–233

    Article  PubMed  Google Scholar 

  35. Nagata C, Matsubara T, Fujita H et al (2005) Mammographic density and the risk of breast cancer in Japanese women. Br J Cancer 92:2102–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wolfe JN (1976) Breast patterns as an index of risk for developing breast cancer. Am J Roentgenol 126:1130–1137

    Article  CAS  Google Scholar 

  37. The Japan central organization on quality assurence of breast cancer screening (2021) Judgement of breast composition. https://www.qabcs.or.jp/index.html. Accessed Sept 2021

  38. Kotsuma Y, Tamaki Y, Nishimura T et al (2008) Quantitative assessment of mammographic density and breast cancer risk for Japanese women. Breast 17:27–35

    Article  PubMed  Google Scholar 

  39. Bae JM, Kim EH (2016) Breast density and risk of breast cancer in Asian women: a meta-analysis of observational studies. J Prev Med Public Health 49:367–375

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ministry of Health, Labour and Welfare (2008) Cancer Screening. https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000059490.html. Accessed Sept 2021

  41. Noma M, Ozaki S, Ishikura M et al (2021) Compressed breast thickness of mammography and detection of breast lesion considering breast content ratio. J Jpn Assoc Breast Cancer Screen 30:173–176 ([in Japanese])

    Article  Google Scholar 

  42. Bakker MF, de Lange SV, Pijnappel RM et al (2019) Supplemental MRI screening for women with extremely dense breast tissue. New Engl J Med 381:2091–2102

    Article  PubMed  Google Scholar 

  43. Saslow D, Boetes C, Burke W et al (2007) American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin 57:75–89

    Article  PubMed  Google Scholar 

  44. Biglia N, Bounous VE, Martincich L et al (2011) Role of MRI (magnetic resonance imaging) versus conventional imaging for breast cancer presurgical staging in young women or with dense breast. Eur J Surg Oncol 37:199–204

    Article  CAS  PubMed  Google Scholar 

  45. Comstock CE, Gatsonis C, Newstead GM et al (2020) Comparison of abbreviated breast MRI vs digital breast tomosynthesis for breast cancer detection among women with dense breasts undergoing screening. JAMA 323:746–756

    Article  PubMed  PubMed Central  Google Scholar 

  46. Haas BM, Kalra V, Geisel J et al (2013) Comparison of tomosynthesis plus digital mammography and digital mammography alone for breast cancer screening. Radiology 269:694–700

    Article  PubMed  Google Scholar 

  47. National Comprehensive Cancer Network (2021) Breast cancer screening and diagnosis. In NCCN guidelines version 1.2021. https://www.nccn.org/professionals/physician_gls/pdf/breast-screening.pdf. Accessed Sept 2021

  48. Paluch-Shimon S, Pagani O, Partridge AH et al (2017) ESO-ESMO 3rd international consensus guidelines for breast cancer in young women (BCY3). Breast 35:203–217

    Article  PubMed  Google Scholar 

  49. Ohuchi N, Suzuki A, Sobue T et al (2016) Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan Strategic Anti-cancer Randomized Trial (J-START): a randomised controlled trial. Lancet 387:341–348

    Article  PubMed  Google Scholar 

  50. Futamura M, Oba M, Masuda N et al (2021) Meta-analysis of nanoparticle albumin-bound paclitaxel used as neoadjuvant chemotherapy for operable breast cancer based on individual patient data (JBCRG-S01 study). Breast Cancer 28:1023–1037

    Article  PubMed  Google Scholar 

  51. Davies C, Godwin J, Gray R et al (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378:771–784

    Article  CAS  PubMed  Google Scholar 

  52. Davies C, Pan H, Godwin J et al (2013) Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 381:805–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Francis PA, Pagani O, Fleming GF et al (2018) Tailoring adjuvant endocrine therapy for premenopausal breast cancer. New Engl J Med 379:122–137

    Article  CAS  PubMed  Google Scholar 

  54. Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. New Engl J Med 351:2817–2826

    Article  CAS  PubMed  Google Scholar 

  55. Sparano JA, Gray RJ, Makower DF et al (2018) Adjuvant chemotherapy guided by a 21-Gene expression assay in breast cancer. New Engl J Med 379:111–121

    Article  CAS  PubMed  Google Scholar 

  56. Voogd AC, Nielsen M, Peterse JL et al (2001) Differences in risk factors for local and distant recurrence after breast-conserving therapy or mastectomy for stage I and II breast cancer: pooled results of two large European randomized trials. J Clin Oncol 19:168–1697

    Article  Google Scholar 

  57. Maishman T, Cutress RI, Hernandez A et al (2017) Local recurrence and breast oncological surgery in young women with breast cancer: the POSH observational cohort study. Ann Surg 266:165–172

    Article  PubMed  Google Scholar 

  58. Baker TG (1963) A quantitative and cytological study of germ cells in human ovries. Proc R Soc Lond B Biol Sci 158:417–433

    Article  CAS  PubMed  Google Scholar 

  59. De Vos M, Devroey P, Fauser BC (2010) Primary ovarian insufficiency. Lancet 376:911–921

    Article  PubMed  Google Scholar 

  60. FertiPROTEKT Netzwerk e.V. (2006) FertiPROTEKT. https://fertiprotekt.com/. Accessed Sept 2021

  61. Lee SJ, Schover LR, Partridge AH et al (2006) American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J Clin Oncol 24:2917–2931

    Article  PubMed  Google Scholar 

  62. Lambertini M, Peccatori FA, Demeestere I et al (2020) Fertility preservation and post-treatment pregnancies in post-pubertal cancer patients: ESMO Clinical Practice Guidelines. Ann Oncol 31:1664–1678

    Article  CAS  PubMed  Google Scholar 

  63. Andrikopoulou A, Apostolidou K, Chatzinikolaou S et al (2021) Trastuzumab administration during pregnancy: an update. BMC Cancer 21:463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Calsteren KV, Verbesselt R, Devlieger et al (2010) Transplacental transfer of paclitaxel, docetaxel, carboplatin, and trastuzumab in a baboon model. Int J Gynecol Cancer 20:1456–1464

    PubMed  Google Scholar 

  65. Zagouri F, Sergentanis TN, Chrysikos D et al (2013) Trastuzumab administration during pregnancy: a systematic review and meta-analysis. Breast Cancer Res Treat 137:349–357

    Article  CAS  PubMed  Google Scholar 

  66. Schuurman TN, Witteveen PO, van der Wall E et al (2019) Tamoxifen and pregnancy: an absolute contraindication? Breast Cancer Res Treat 175:17–25

    Article  CAS  PubMed  Google Scholar 

  67. Partridge AH, Niman SM, Ruggeri M et al (2021) Who are the women who enrolled in the POSITIVE trial: a global study to support young hormone receptor positive breast cancer survivors desiring pregnancy. Breast 59:327–338

    Article  PubMed  PubMed Central  Google Scholar 

  68. Miyoshi Y, Ohta H, Namba N et al (2013) Low serum concentrations of anti-Müllerian hormone are common in 53 female childhood cancer survivors. Horm Res Paediatr 79:17–21

    Article  CAS  PubMed  Google Scholar 

  69. Suzuki N (2016) Oncofertility in Japan: advances in research and the roles of oncofertility consortia. Future Oncol 12:2307–2311

    Article  CAS  PubMed  Google Scholar 

  70. Japan Society of Fertility Preservation (2012) [article/webpage name]. http://j-sfp.org/about/registry.html. Accessed Sept 2021

  71. Furui T, Takenaka M, Makino H et al (2016) An evaluation of the Gifu Model in a trial for a new regional oncofertility network in Japan, focusing on its necessity and effects. Reprod Med Biol 15:107–113

    Article  PubMed  Google Scholar 

  72. Japan Society of Clinical Oncology (2017) JSCO Clinical Practice Guidelines 2017 for fertility preservation in childhood, adlescent and young adult cancer patients, vol 1. Kanehara syuppan, Tokyo

    Google Scholar 

  73. Suzuki N (2019) Clinical practice guidelines for fertility preservation in pediatric, adolescent, and young adults with cancer. Int J Clin Oncol 24:20–27

    Article  PubMed  Google Scholar 

  74. Ministry of Health, Labour and Welfare (2021) Promotion project of oncofertility preservation for pediatric and AYA cancer patients. https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000183313.html. Accessed Sept 2021

  75. Japan Society of Fertility Preservation (2018) Japan Oncofertility Registry. http://j-sfp.org/about/registry.html. Accessed Sept 2021

  76. Sanada Y, Harada M, Kunitomi C et al (2019) A Japanese nationwide survey on the cryopreservation of embryos, oocytes and ovarian tissue for cancer patients. J Obstet Gynaecol Res 45(10):2021–2028

    Article  PubMed  Google Scholar 

  77. Gnerlich JL, Deshpande AD, Jeffe DB et al (2009) Elevated breast cancer mortality in women younger than age 40 years compared with older women is attributed to poorer survival in early-stage disease. J Am Coll Surg 208:341–347

    Article  PubMed  PubMed Central  Google Scholar 

  78. Pan H, Gray R, Braybrooke J et al (2017) 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. New Engl J Med 377:1836–1846

    Article  PubMed  Google Scholar 

  79. Chao C, Bhatia S, Xu L et al (2020) Chronic comorbidities among survivors of adolescent and young adult cancer. J Clin Oncol 38:3161–3174

    Article  PubMed  PubMed Central  Google Scholar 

  80. Urabe Y, Arimura K, Kojima H et al (2018) Abstract 11924: modern breast cancer treatment with anthracycline containing chemotherapy improved the incidence of heart failure. Circulation 138:A11924

    Google Scholar 

  81. Banke A, Fosbøl EL, Ewertz M et al (2019) Long-term risk of heart failure in breast cancer patients after adjuvant chemotherapy with or without trastuzumab. JACC Heart Fail 7:217–224

    Article  PubMed  Google Scholar 

  82. Keegan THM, Bleyer A, Rosenberg AS et al (2017) Second primary malignant neoplasms and survival in adolescent and young adult cancer survivors. JAMA Oncol 3:1554–1557

    Article  PubMed  PubMed Central  Google Scholar 

  83. Darby S, McGale P, Correa C et al (2011) Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 378:1707–1716

    Article  CAS  PubMed  Google Scholar 

  84. Bartelink H, Horiot JC, Poortmans PM et al (2007) Impact of a higher radiation dose on local control and survival in breast-conserving therapy of early breast cancer: 10-year results of the randomized boost versus no boost EORTC 22881–10882 trial. J Clin Oncol 25:3259–3265

    Article  PubMed  Google Scholar 

  85. Taylor C, McGale P, Brønnum D et al (2018) Cardiac structure injury after radiotherapy for breast cancer: cross-sectional study with individual patient data. J Clin Oncol 36:2288–2296

    Article  PubMed  PubMed Central  Google Scholar 

  86. Boice JD Jr, Harvey EB, Blettner M et al (1992) Cancer in the contralateral breast after radiotherapy for breast cancer. New Engl J Med 326:781–785

    Article  PubMed  Google Scholar 

  87. Armenian SH, Hudson MM, Mulder RL et al (2015) Recommendations for cardiomyopathy surveillance for survivors of childhood cancer: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol 16:e123-136

    Article  PubMed  PubMed Central  Google Scholar 

  88. Azim HA Jr, Bellettini G, Gelber S et al (2009) Breast-feeding after breast cancer: if you wish, madam. Breast Cancer Res Treat 114:7–12

    Article  PubMed  Google Scholar 

  89. Higgins S, Haffty BG (1994) Pregnancy and lactation after breast-conserving therapy for early stage breast cancer. Cancer 73:2175–2180

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. Enya for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Futamura.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Futamura, M., Yoshida, K. Current status of AYA-generation breast cancer: trends worldwide and in Japan. Int J Clin Oncol 27, 16–24 (2022). https://doi.org/10.1007/s10147-021-02087-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-021-02087-4

Keywords

Navigation