Skip to main content

Advertisement

Log in

The expression and clinical significance of the tRNA aspartic acid methyltransferase 1 protein in gastric cancer

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Objectives

This study aimed to investigate the role of the tRNA aspartic acid methyltransferase 1 (TRDMT1) protein in the development and progression of gastric cancer (GC).

Methods

The 90 GC tissues and 35 paracancerous tissues (gastric mucosa) were collected from patients (31 males and 59 females; average age 66), who were pathologically diagnosed as GC. The expression of TRDMT1 in three GC cell lines (MKN28, BGC823, and MGC803) and tissues from GC patients were detected by western blotting and immunological staining, respectively. The relationship between TRDMT1 expression and clinicopathological parameters in GC patients was explored. TRDMT1 was knocked down by RNAi lentivirus in GC cells. GC cell migration and invasion were analyzed using scratch and transwell assays.

Results

TRDMT1 expression in the GC cell lines was higher than that in the normal gastric mucosal epithelial cell line (P < 0.05). Positive TRDMT1 protein expression in the GC tissue was higher than that in the adjacent tissue. The expression of TRDMT1 was positively associated with tumor size, histological grade, invasion depth, lymph node metastasis, and tumor node metastasis (TNM) stage (P < 0.05). High TRDMT1 expression predicted poor OS of GC patients. Tumor size, differentiation degree, invasion depth, lymph node metastasis, TNM stage, and TRDMT1 expression were independent predictors of the OS of GC patients. Knockdown of TRDMT1 inhibited the migration and invasion of MKN28 cells.

Conclusion

TRDMT1 was highly expressed in GC cell lines and tissues. TRDMT1 expression was independent predictor of the OS of GC patients. TRDMT1 knockdown reduced GC cell migration and invasion. All these results suggested that TRDMT1 has the potential to be used as a target for the diagnosis and treatment of GC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics. CA Cancer J Clin 65:5–29

    Article  Google Scholar 

  2. Chen W, Zheng R, Baade PD et al (2016) Cancer statistics in China. CA Cancer J Clin 66:115–132

    Article  Google Scholar 

  3. Fattahi S, Golpour M, Amjadi-Moheb F et al (2018) DNA methyltransferases and gastric cancer: insight into targeted therapy. Epigenomics 10:1477–1497

    Article  CAS  Google Scholar 

  4. Fu D-G (2015) Epigenetic alterations in gastric cancer. Mol Med Rep 12:3223–3230

    Article  CAS  Google Scholar 

  5. Fernandez AF, Huidobro C, Fraga MF (2012) De novo DNA methyltransferases: oncogenes, tumor suppressors, or both? Trends Genet 28:474–479

    Article  CAS  Google Scholar 

  6. Kim TY, Jong HS, Jung Y et al (2004) DNA hypermethylation in gastric cancer. Aliment Pharmacol Ther 20:131–142

    Article  CAS  Google Scholar 

  7. Jin B, Robertson KD (2013) DNA methyltransferases, DNA damage repair, and cancer. Adv Exp Med Biol 754:3

    Article  CAS  Google Scholar 

  8. Toyota M, Yamamoto E (2011) DNA methylation changes in cancer. Prog Mol Biol Transl Sci 101:447–457. https://doi.org/10.1016/B978-0-12-387685-0.00014-7

    Article  CAS  PubMed  Google Scholar 

  9. Schaefer M, Lyko F (2010) Solving the Dnmt2 enigma. Chromosoma 119:35–40

    Article  CAS  Google Scholar 

  10. Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610

    Article  CAS  Google Scholar 

  11. Delaval K, Wagschal A, Feil R (2006) Epigenetic deregulation of imprinting in congenital diseases of aberrant growth. Bioessays 28:453–459

    Article  CAS  Google Scholar 

  12. Balada E, Ordi-Ros J, Serrano-Acedo S et al (2008) Transcript levels of DNA methyltransferases DNMT1, DNMT3A and DNMT3B in CD4+ T cells from patients with systemic lupus erythematosus. Immunology 124:339–347

    Article  CAS  Google Scholar 

  13. Yang J, Fang X (2012) Expression of DNMT1, DNMT3a, and DNMT3b in eutopic endometrium. Zhong nan da xue xue bao. Yi xue ban = J Cent South Univ (Med Sci) 37:94–99

    CAS  Google Scholar 

  14. Vieira GC, Vieira GF, Sinigaglia M et al (2017) Linking epigenetic function to electrostatics: The DNMT2 structural model example. PloS One. https://doi.org/10.1371/journal.pone.0178643

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li H, Li W, Liu S et al (2016) DNMT1, DNMT3A and DNMT3B polymorphisms associated with gastric cancer risk: a systematic review and meta-analysis. EBioMedicine 13:125–131

    Article  CAS  Google Scholar 

  16. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    Article  CAS  Google Scholar 

  17. Hermann A, Schmitt S, Jeltsch A (2003) The human Dnmt2 has residual DNA-(cytosine-C5) methyltransferase activity. J Biol Chem 278:31717–31721

    Article  CAS  Google Scholar 

  18. Goll MG, Kirpekar F, Maggert KA et al (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311:395–398

    Article  CAS  Google Scholar 

  19. El-Deiry WS, Nelkin BD, Celano P et al (1991) High expression of the DNA methyltransferase gene characterizes human neoplastic cells and progression stages of colon cancer. Proc Natl Acad Sci 88:3470–3474

    Article  CAS  Google Scholar 

  20. Patra SK, Patra A, Zhao H et al (2002) DNA methyltransferase and demethylase in human prostate cancer. Mol Carcinog 33:163–171

    Article  CAS  Google Scholar 

  21. Girault I, Tozlu S, Lidereau R et al (2003) Expression analysis of DNA methyltransferases 1, 3A, and 3B in sporadic breast carcinomas. Clin Cancer Res 9:4415–4422

    CAS  PubMed  Google Scholar 

  22. Yang X-X, He X-Q, Li F-X et al (2012) Risk-association of DNA methyltransferases polymorphisms with gastric cancer in the Southern Chinese population. Int J Mol Sci 13:8364–8378

    Article  CAS  Google Scholar 

  23. Oh B-K, Kim H, Park H-J et al (2007) DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. Int J Mol Med 20:65–73

    CAS  PubMed  Google Scholar 

  24. Melki J, Warnecke P, Vincent P et al (1998) Increased DNA methyltransferase expression in leukaemia. Leukemia 12:311–316

    Article  CAS  Google Scholar 

  25. Kanai Y, Ushijima S, Kondo Y et al (2001) DNA methyltransferase expression and DNA methylation of CPG islands and peri-centromeric satellite regions in human colorectal and stomach cancers. Int J Cancer 91:205–212

    Article  CAS  Google Scholar 

  26. Ghanbarian H, Wagner N, Polo B et al (2016) Dnmt2/Trdmt1 as mediator of RNA polymerase II transcriptional activity in cardiac growth. PloS One 11:e0156953. https://doi.org/10.1371/journal.pone.0156953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xue S, Xu H, Sun Z et al (2019) Depletion of TRDMT1 affects 5-methylcytosine modification of mRNA and inhibits HEK293 cell proliferation and migration. Biochem Biophys Res Commun 520:60–66

    Article  CAS  Google Scholar 

  28. Dev RR, Ganji R, Singh SP et al (2017) Cytosine methylation by DNMT2 facilitates stability and survival of HIV-1 RNA in the host cell during infection. Biochem J 474:2009–2026

    Article  CAS  Google Scholar 

  29. Lewinska A, Adamczyk-Grochala J, Kwasniewicz E et al (2017) Downregulation of methyltransferase Dnmt2 results in condition-dependent telomere shortening and senescence or apoptosis in mouse fibroblasts. J Cell Physiol 232:3714–3726

    Article  CAS  Google Scholar 

  30. Tuorto F, Herbst F, Alerasool N et al (2015) The tRNA methyltransferase Dnmt2 is required for accurate polypeptide synthesis during haematopoiesis. EMBO J 34:2350–2362

    Article  CAS  Google Scholar 

Download references

Acknowledgements

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Huang, X., Lu, X. et al. The expression and clinical significance of the tRNA aspartic acid methyltransferase 1 protein in gastric cancer. Int J Clin Oncol 26, 2229–2236 (2021). https://doi.org/10.1007/s10147-021-02019-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-021-02019-2

Keywords

Navigation