Skip to main content

Advertisement

Log in

Next-generation sequencing-based clinical sequencing: toward precision medicine in solid tumors

  • Invited Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Numerous technical and functional advances in next-generation sequencing (NGS) have led to the adoption of this technique in conventional clinical practice. Recently, large-scale genomic research and NGS technological innovation have revealed many more details of somatic and germline mutations in solid tumors. This development is allowing for the classification of tumor type sub-categories based on genetic alterations in solid tumors, and based on this information, new drugs and targeted therapies are being administered to patients. This has largely been facilitated by gene panel testing, which allows for a better understanding of the genetic basis for an individual’s response to therapy. NGS-based comprehensive gene panel testing is a clinically useful approach to investigate genomic mechanisms, including therapy-related signaling pathways, microsatellite instability, hypermutated phenotypes, and tumor mutation burden. In this review, we describe the concept of precision medicine in solid tumors using NGS-based comprehensive gene panel testing, as well as the importance of quality control of tissue sample handling in routine NGS-based genomic testing, and we discuss issues for the future adoption of this technique in Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Reuter JA, Spacek DV, Snyder MP (2015) High-throughput sequencing technologies. Mol Cell 58:586–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shyr D, Liu Q (2013) Next generation sequencing in cancer research and clinical application. Biol Proced Online 15:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Akbani R, Ng PK, Werner HM et al (2014) A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nat Commun 5:3887

    Article  CAS  PubMed  Google Scholar 

  5. Robson ME, Bradbury AR, Arun B et al (2015) American Society of Clinical Oncology Policy Statement Update: Genetic and Genomic Testing for Cancer Susceptibility. J Clin Oncol 33:3660–3667

    Article  CAS  PubMed  Google Scholar 

  6. Stanislaw C, Xue Y, Wilcox WR (2016) Genetic evaluation and testing for hereditary forms of cancer in the era of next-generation sequencing. Cancer Biol Med 13:55–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pleasance ED, Cheetham RK, Stephens PJ et al (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463:191–196

    Article  CAS  PubMed  Google Scholar 

  8. Weinstein JN, Collisson EA, Mills GB et al (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45:1113–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Futreal PA, Coin L, Marshall M et al (2004) A census of human cancer genes. Nat Rev Cancer 4:177–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Forbes SA, Beare D, Gunasekaran P et al (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:D805–D811

    Article  CAS  PubMed  Google Scholar 

  11. Vogelstein B, Papadopoulos N, Velculescu VE et al (2013) Cancer genome landscapes. Science 339:1546–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458:719–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ellis MJ, Perou CM (2013) The genomic landscape of breast cancer as a therapeutic roadmap. Cancer Discov 3:27–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Clinical Lung Cancer Genome Project (CLCGP); Network Genomic Medicine (NGM) (2013) A genomics-based classification of human lung tumors. Sci Transl Med 5:209ra153

    Article  CAS  Google Scholar 

  15. Wu K, Huang RS, House L et al (2013) Next-generation sequencing for lung cancer. Future Oncol 9:1323–1336

    Article  CAS  PubMed  Google Scholar 

  16. Lianos GD, Mangano A, Cho WC et al (2015) From standard to new genome-based therapy of gastric cancer. Expert Rev Gastroenterol Hepatol 9:1023–1026

    Article  CAS  PubMed  Google Scholar 

  17. Nagahashi M, Shimada Y, Ichikawa H et al (2018) Next generation sequencing-based gene panel tests for the management of solid tumor. Cancer Sci. https://doi.org/10.1111/cas.13837

    Article  PubMed  PubMed Central  Google Scholar 

  18. Varmus H (2003) Genomic empowerment: the importance of public databases. Nat Genet 35(Suppl 1):3

    Article  PubMed  Google Scholar 

  19. Varmus H, Stillman B (2005) Support for the Human Cancer Genome Project. Science 310:1615

    Article  CAS  PubMed  Google Scholar 

  20. Wheeler DA, Wang L (2013) From human genome to cancer genome: the first decade. Genome Res 23:1054–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Endrullat C, Glokler J, Franke P et al (2016) Standardization and quality management in next-generation sequencing. Appl Transl Genom 10:2–9

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nagahashi M, Shimada Y, Ichikawa H et al (2017) Formalin-fixed paraffin-embedded sample conditions for deep next generation sequencing. J Surg Res 220:125–132

    Article  PubMed  PubMed Central  Google Scholar 

  23. Arreaza G, Qiu P, Pang L et al (2016) Pre-analytical considerations for successful next-generation Sequencing (NGS): challenges and opportunities for formalin-fixed and paraffin-embedded tumor tissue (FFPE) samples. Int J Mol Sci 17(9):1579

    Article  PubMed Central  Google Scholar 

  24. Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baca SC, Prandi D, Lawrence MS et al (2013) Punctuated evolution of prostate cancer genomes. Cell 153:666–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kandoth C, McLellan MD, Vandin F et al (2013) Mutational landscape and significance across 12 major cancer types. Nature 502:333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Le Tourneau C, Delord JP, Goncalves A et al (2015) Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol 16:1324–1334

    Article  CAS  PubMed  Google Scholar 

  28. Xue Y, Ankala A, Wilcox WR et al (2015) Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med 17:444–451

    Article  CAS  PubMed  Google Scholar 

  29. Horak P, Fröhling S, Glimm H (2016) Integrating next-generation sequencing into clinical oncology: strategies, promises and pitfalls. ESMO Open 1(5):e000094

    Article  PubMed  PubMed Central  Google Scholar 

  30. Garraway LA, Lander ES (2013) Lessons from the cancer genome. Cell 153:17–37

    Article  CAS  PubMed  Google Scholar 

  31. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yuza K, Nagahashi M, Watanabe S et al (2017) Hypermutation and microsatellite instability in gastrointestinal cancers. Oncotarget 8:112103–112115

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–337

    Article  CAS  Google Scholar 

  35. Nagahashi M, Wakai T, Shimada Y et al (2016) Genomic landscape of colorectal cancer in Japan: clinical implications of comprehensive genomic sequencing for precision medicine. Genome Med 8:136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mensenkamp AR, Vogelaar IP, van Zelst-Stams WA et al (2014) Somatic mutations in MLH1 and MSH2 are a frequent cause of mismatch-repair deficiency in Lynch syndrome-like tumors. Gastroenterology 146:643–646.e648

    Article  CAS  PubMed  Google Scholar 

  37. Kautto EA, Bonneville R, Miya J et al (2017) Performance evaluation for rapid detection of pan-cancer microsatellite instability with MANTIS. Oncotarget 8:7452–7463

    Article  PubMed  Google Scholar 

  38. Hause RJ, Pritchard CC, Shendure J et al (2016) Classification and characterization of microsatellite instability across 18 cancer types. Nat Med 22:1342–1350

    Article  CAS  PubMed  Google Scholar 

  39. Ichikawa H, Nagahashi M, Shimada Y et al (2017) Actionable gene-based classification toward precision medicine in gastric cancer. Genome Med 9:93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hoelder S, Clarke PA, Workman P (2012) Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol Oncol 6:155–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ledford H (2010) Big science: the cancer genome challenge. Nature 464:972–974

    Article  CAS  PubMed  Google Scholar 

  42. Chang F, Li MM (2013) Clinical application of amplicon-based next-generation sequencing in cancer. Cancer Genet 206:413–419

    Article  CAS  PubMed  Google Scholar 

  43. Van Allen EM, Wagle N, Levy MA (2013) Clinical analysis and interpretation of cancer genome data. J Clin Oncol 31:1825–1833

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hampel H, Bennett RL, Buchanan A, Pearlman R et al (2015) A practice guideline from the American College of Medical Genetics and Genomics and the National Society of Genetic Counselors: referral indications for cancer predisposition assessment. Genet Med 17:70–87

    Article  PubMed  Google Scholar 

  45. Desmedt C, Voet T, Sotiriou C et al (2012) Next-generation sequencing in breast cancer: first take home messages. Curr Opin Oncol 24:597–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. LeBlanc VG, Marra MA (2015) Next-generation sequencing approaches in cancer: where have they brought us and where will they take us? Cancers (Basel) 7:1925–1958

    Article  Google Scholar 

  47. Giuliano AE, Connolly JL, Edge SB et al (2017) Breast cancer-major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin 67:290–303

    Article  PubMed  Google Scholar 

  48. Buchtel KM, Vogel Postula KJ, Weiss S et al (2018) FDA approval of PARP inhibitors and the impact on genetic counseling and genetic testing practices. J Genet Couns 27:131–139

    Article  PubMed  Google Scholar 

  49. Imai S, Ichikawa T, Sugiyama C et al (2018) Contribution of Human Liver and Intestinal Carboxylesterases to the Hydrolysis of Selexipag In Vitro. J Pharm Sci. https://doi.org/10.1016/j.xphs.2018.09.022

    Article  PubMed  Google Scholar 

  50. Moreira RB, Alessandretti MB, Abrahao CM et al (2015) Next-generation sequencing (NGS) in metastatic gastrointestinal cancer (mGIC) patients: translation from sequence data into clinical practice. J Clin Oncol 33:72–72

    Article  Google Scholar 

  51. Lerner-Ellis J, Khalouei S, Sopik V (2015) Genetic risk assessment and prevention: the role of genetic testing panels in breast cancer. Expert Rev Anticancer Ther 15:1315–1326

    Article  CAS  PubMed  Google Scholar 

  52. Hyman DM, Piha-Paul SA, Won H et al (2018) HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature 554:189–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lowes LE, Bratman SV, Dittamore R et al (2016) Circulating Tumor Cells (CTC) and Cell-Free DNA (cfDNA) Workshop 2016: Scientific Opportunities and Logistics for Cancer Clinical Trial Incorporation. Int J Mol Sci. https://doi.org/10.3390/ijms17091505

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shimomura A, Shiino S, Kawauchi J et al (2016) Novel combination of serum microRNA for detecting breast cancer in the early stage. Cancer Sci 107:326–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshifumi Wakai.

Ethics declarations

Conflict of interest

Toshifumi Wakai received remuneration from Denka Company Limited and received research funding from Denka Company Limited, Eisai Co., Ltd.; Taisho Toyama Pharmaceutical Co., Ltd.; Taiho Pharmaceutical Co., Ltd.; Sumitomo Dainippon Pharma Co., Ltd.; Takeda Pharmaceutical Co., Ltd.; Chugai Pharmaceutical Co., Ltd.; Eli Lilly Japan K.K.; and Yakult Honsha Co., Ltd. Pankaj Prasoon, Yuki Hirose, Yoshifumi Shimada, Hiroshi Ichikawa, and Masayuki Nagahashi have no conflict of interest to disclose.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakai, T., Prasoon, P., Hirose, Y. et al. Next-generation sequencing-based clinical sequencing: toward precision medicine in solid tumors. Int J Clin Oncol 24, 115–122 (2019). https://doi.org/10.1007/s10147-018-1375-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-018-1375-3

Keywords

Navigation