Skip to main content

Advertisement

Log in

Alcohol drinking, cigarette smoking, and the development of squamous cell carcinoma of the esophagus: molecular mechanisms of carcinogenesis

  • Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Esophageal cancer is the eighth most common incident cancer in the world and ranks sixth among all cancers in mortality. Esophageal cancers are classified into two histological types; esophageal squamous cell carcinoma (ESCC), and adenocarcinoma, and the incidences of these types show a striking variety of geographic distribution, possibly reflecting differences in exposure to specific environmental factors. Both alcohol consumption and cigarette smoking are major risk factors for the development of ESCC. Acetaldehyde is the most toxic ethanol metabolite in alcohol-associated carcinogenesis, while ethanol itself stimulates carcinogenesis by inhibiting DNA methylation and by interacting with retinoid metabolism. Cigarette smoke contains more than 60 carcinogens and there are strong links between some of these carcinogens and various smoking-induced cancers; these mechanisms are well established. Synergistic effects of cigarette smoking and alcohol consumption are also observed in carcinogenesis of the upper aerodigestive tract. Of note, intensive molecular biological studies have revealed the molecular mechanisms involved in the development of ESCC, including genetic and epigenetic alterations. However, a wide range of molecular changes is associated with ESCC, possibly because the esophagus is exposed to many kinds of carcinogens including alcohol and cigarette smoke, and it remains unclear which alterations are the most critical for esophageal carcinogenesis. This brief review summarizes the general mechanisms of alcohol- and smoking-induced carcinogenesis and then discusses the mechanisms of the development of ESCC, with special attention to alcohol consumption and cigarette smoking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baan R, Straif K, Grosse Y et al (2007) Carcinogenicity of alcoholic beverages. Lancet Oncol 8:292–293

    PubMed  Google Scholar 

  2. The International Agency for Research on Cancer (1988) Alcohol drinking. IARC, Lyon

  3. Seitz HK, Stickel F (2007) Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer 7:599–612

    CAS  PubMed  Google Scholar 

  4. The International Agency for Research on Cancer (2004) Tobacco smoke and involuntary smoking. IARC, Lyon, pp 53–119

  5. Hecht SS (2006) Cigarette smoking: cancer risks, carcinogens, and mechanisms. Langenbecks Arch Surg 391:603–613

    PubMed  Google Scholar 

  6. The International Agency for Research on Cancer (2004) Tobacco smoke and involuntary smoking. IARC, Lyon, pp 1179–1187

  7. Xu XC (2009) Risk factors and gene expression in esophageal cancer. Methods Mol Biol 471:335–360

    CAS  PubMed  Google Scholar 

  8. Mandard AM, Hainaut P, Hollstein M (2000) Genetic steps in the development of squamous cell carcinoma of the esophagus. Mutat Res 462:335–342

    CAS  PubMed  Google Scholar 

  9. Stoner GD, Gupta A (2001) Etiology and chemoprevention of esophageal squamous cell carcinoma. Carcinogenesis 22:1737–1746

    CAS  PubMed  Google Scholar 

  10. Metzger R, Schneider PM, Warnecke-Eberz U et al (2004) Molecular biology of esophageal cancer. Onkologie 27:200–206

    CAS  PubMed  Google Scholar 

  11. Kuwano H, Kato H, Miyazaki T et al (2005) Genetic alterations in esophageal cancer. Surg Today 35:7–18

    PubMed  Google Scholar 

  12. Wang XD (2005) Alcohol, vitamin A, and cancer. Alcohol 35:251–258

    CAS  PubMed  Google Scholar 

  13. Yokoyama A, Kato H, Yokoyama T et al (2002) Genetic polymorphisms of alcohol and aldehyde dehydrogenases and glutathione S-transferase M1 and drinking, smoking, and diet in Japanese men with esophageal squamous cell carcinoma. Carcinogenesis 23:1851–1859

    CAS  PubMed  Google Scholar 

  14. Yokoyama A, Omori T, Yokoyama T (2007) Risk appraisal and endoscopic screening for esophageal squamous cell carcinoma in Japanese populations. Esophagus 4:135–143

    Google Scholar 

  15. Homann N, Tillonen J, Meurman JH et al (2000) Increased salivary acetaldehyde levels in heavy drinkers and smokers: a microbiological approach to oral cavity cancer. Carcinogenesis 21:663–668

    CAS  PubMed  Google Scholar 

  16. Bartsch H (1996) DNA adducts in human carcinogenesis: etiological relevance and structure–activity relationship. Mutat Res 340:67–79

    PubMed  Google Scholar 

  17. Matsuda T, Kawanishi M, Yagi T et al (1998) Specific tandem GG to TT base substitutions induced by acetaldehyde are due to intra-strand crosslinks between adjacent guanine bases. Nucleic Acids Res 26:1769–1774

    CAS  PubMed  Google Scholar 

  18. Maffei F, Fimognari C, Castelli E et al (2000) Increased cytogenetic damage detected by FISH analysis on micronuclei in peripheral lymphocytes from alcoholics. Mutagenesis 15:517–523

    CAS  PubMed  Google Scholar 

  19. Fang JL, Vaca CE (1997) Detection of DNA adducts of acetaldehyde in peripheral white blood cells of alcohol abusers. Carcinogenesis 18:627–632

    CAS  PubMed  Google Scholar 

  20. Theruvathu JA, Jaruga P, Nath RG et al (2005) Polyamines stimulate the formation of mutagenic 1, N2-propanodeoxyguanosine adducts from acetaldehyde. Nucleic Acids Res 33:3513–3520

    CAS  PubMed  Google Scholar 

  21. Simanowski UA, Suter P, Stickel F et al (1993) Esophageal epithelial hyperproliferation following long-term alcohol consumption in rats: effects of age and salivary gland function. J Natl Cancer Inst 85:2030–2033

    CAS  PubMed  Google Scholar 

  22. Homann N, Karkkainen P, Koivisto T et al (1997) Effects of acetaldehyde on cell regeneration and differentiation of the upper gastrointestinal tract mucosa. J Natl Cancer Inst 89:1692–1697

    CAS  PubMed  Google Scholar 

  23. Garro AJ, Espina N, Farinati F et al (1986) The effects of chronic ethanol consumption on carcinogen metabolism and on O6-methylguanine transferase-mediated repair of alkylated DNA. Alcohol Clin Exp Res 10:73S–77S

    CAS  PubMed  Google Scholar 

  24. Homann N, Seitz HK, Wang XD et al (2005) Mechanisms in alcohol-associated carcinogenesis. Alcohol Clin Exp Res 29:1317–1320

    CAS  PubMed  Google Scholar 

  25. Seitz HK, Stickel F (2006) Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress. Biol Chem 387:349–360

    CAS  PubMed  Google Scholar 

  26. Shimizu M, Lasker JM, Tsutsumi M et al (1990) Immunohistochemical localization of ethanol-inducible P450IIE1 in the rat alimentary tract. Gastroenterology 99:1044–1053

    CAS  PubMed  Google Scholar 

  27. Chamulitrat W, Spitzer JJ (1996) Nitric oxide and liver injury in alcohol-fed rats after lipopolysaccharide administration. Alcohol Clin Exp Res 20:1065–1070

    CAS  PubMed  Google Scholar 

  28. Hu W, Feng Z, Eveleigh J et al (2002) The major lipid peroxidation product, trans-4-hydroxy-2-nonenal, preferentially forms DNA adducts at codon 249 of human p53 gene, a unique mutational hotspot in hepatocellular carcinoma. Carcinogenesis 23:1781–1789

    CAS  PubMed  Google Scholar 

  29. Mena S, Ortega A, Estrela JM (2009) Oxidative stress in environmental-induced carcinogenesis. Mutat Res 674:36–44

    CAS  PubMed  Google Scholar 

  30. Baylin SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2(Suppl 1):S4–S11

    CAS  PubMed  Google Scholar 

  31. Martinez-Chantar ML, Garcia-Trevijano ER, Latasa MU et al (2002) Importance of a deficiency in S-adenosyl-l-methionine synthesis in the pathogenesis of liver injury. Am J Clin Nutr 76:1177S–1182S

    CAS  PubMed  Google Scholar 

  32. Choi SW, Stickel F, Baik HW et al (1999) Chronic alcohol consumption induces genomic but not p53-specific DNA hypomethylation in rat colon. J Nutr 129:1945–1950

    CAS  PubMed  Google Scholar 

  33. Liu C, Russell RM, Seitz HK et al (2001) Ethanol enhances retinoic acid metabolism into polar metabolites in rat liver via induction of cytochrome P4502E1. Gastroenterology 120:179–189

    CAS  PubMed  Google Scholar 

  34. Wang XD, Liu C, Chung J et al (1998) Chronic alcohol intake reduces retinoic acid concentration and enhances AP-1 (c-Jun and c-Fos) expression in rat liver. Hepatology 28:744–750

    CAS  PubMed  Google Scholar 

  35. Pfeifer GP, Denissenko MF, Olivier M et al (2002) Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 21:7435–7451

    CAS  PubMed  Google Scholar 

  36. Straif K, Baan R, Grosse Y et al (2005) Carcinogenicity of polycyclic aromatic hydrocarbons. Lancet Oncol 6:931–932

    PubMed  Google Scholar 

  37. Kamangar F, Chow WH, Abnet CC et al (2009) Environmental causes of esophageal cancer. Gastroenterol Clin North Am 38:27–57

    PubMed  Google Scholar 

  38. Hecht SS (1998) Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines. Chem Res Toxicol 11:559–603

    CAS  PubMed  Google Scholar 

  39. Hecht SS, Hoffmann D (1989) The relevance of tobacco-specific nitrosamines to human cancer. Cancer Surv 8:273–294

    CAS  PubMed  Google Scholar 

  40. Lijinsky W (1992) Chemistry and biology of N-nitroso compounds. Cambridge University Press, Cambridge

    Google Scholar 

  41. Arora A, Willhite CA, Liebler DC (2001) Interactions of beta-carotene and cigarette smoke in human bronchial epithelial cells. Carcinogenesis 22:1173–1178

    CAS  PubMed  Google Scholar 

  42. Hecht SS (1999) Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91:1194–1210

    CAS  PubMed  Google Scholar 

  43. Guengerich FP (2001) Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14:611–650

    CAS  PubMed  Google Scholar 

  44. Jalas JR, Hecht SS, Murphy SE (2005) Cytochrome P450 enzymes as catalysts of metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, a tobacco specific carcinogen. Chem Res Toxicol 18:95–110

    CAS  PubMed  Google Scholar 

  45. Tang D, Phillips DH, Stampfer M et al (2001) Association between carcinogen-DNA adducts in white blood cells and lung cancer risk in the physicians health study. Cancer Res 61:6708–6712

    CAS  PubMed  Google Scholar 

  46. Armstrong R (1997) Glutathione S-transferases. In: Guengerich F (ed) Comprehensive toxicology: biotransformation. Elsevier, New York, pp 307–327

    Google Scholar 

  47. Burchell B, McGurk K, Brierley CH et al (1997) UDP-glucuronosyltransferases. In: Guengerich FP (eds) Comprehensive toxicology: biotransformation, vol 3. Elsevier Science, New York, pp 401–436

    Google Scholar 

  48. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374

    CAS  PubMed  Google Scholar 

  49. Bode AM, Dong Z (2005) Signal transduction pathways in cancer development and as targets for cancer prevention. Prog Nucleic Acid Res Mol Biol 79:237–297

    CAS  PubMed  Google Scholar 

  50. Liu Z, Muehlbauer KR, Schmeiser HH et al (2005) p53 mutations in benzo(a)pyrene-exposed human p53 knock-in murine fibroblasts correlate with p53 mutations in human lung tumors. Cancer Res 65:2583–2587

    CAS  PubMed  Google Scholar 

  51. Pfeifer GP, Besaratinia A (2009) Mutational spectra of human cancer. Hum Genet 125:493–506

    CAS  PubMed  Google Scholar 

  52. Kozack R, Seo KY, Jelinsky SA et al (2000) Toward an understanding of the role of DNA adduct conformation in defining mutagenic mechanism based on studies of the major adduct (formed at N(2)-dG) of the potent environmental carcinogen, benzo[a]pyrene. Mutat Res 450:41–59

    CAS  PubMed  Google Scholar 

  53. Denissenko MF, Pao A, Tang M et al (1996) Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 274:430–432

    CAS  PubMed  Google Scholar 

  54. Ye YN, Liu ES, Shin VY et al (2004) Nicotine promoted colon cancer growth via epidermal growth factor receptor, c-Src, and 5-lipoxygenase-mediated signal pathway. J Pharmacol Exp Ther 308:66–72

    CAS  PubMed  Google Scholar 

  55. Zong Y, Zhang ST, Zhu ST (2009) Nicotine enhances migration and invasion of human esophageal squamous carcinoma cells which is inhibited by nimesulide. World J Gastroenterol 15:2500–2505

    CAS  PubMed  Google Scholar 

  56. Heeschen C, Jang JJ, Weis M et al (2001) Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med 7:833–839

    CAS  PubMed  Google Scholar 

  57. West KA, Brognard J, Clark AS et al (2003) Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J Clin Invest 111:81–90

    CAS  PubMed  Google Scholar 

  58. Moraitis D, Du B, De Lorenzo MS et al (2005) Levels of cyclooxygenase-2 are increased in the oral mucosa of smokers: evidence for the role of epidermal growth factor receptor and its ligands. Cancer Res 65:664–670

    CAS  PubMed  Google Scholar 

  59. Xu XC (2002) COX-2 inhibitors in cancer treatment and prevention, a recent development. Anticancer Drugs 13:127–137

    CAS  PubMed  Google Scholar 

  60. Belinsky SA (2005) Silencing of genes by promoter hypermethylation: key event in rodent and human lung cancer. Carcinogenesis 26:1481–1487

    CAS  PubMed  Google Scholar 

  61. Morita M, Saeki H, Mori M et al (2002) Risk factors for esophageal cancer and the multiple occurrence of carcinoma in the upper aerodigestive tract. Surgery 131:S1–S6

    PubMed  Google Scholar 

  62. Homann N, Tillonen J, Rintamaki H et al (2001) Poor dental status increases acetaldehyde production from ethanol in saliva: a possible link to increased oral cancer risk among heavy drinkers. Oral Oncol 37:153–158

    CAS  PubMed  Google Scholar 

  63. Salaspuro V, Salaspuro M (2004) Synergistic effect of alcohol drinking and smoking on in vivo acetaldehyde concentration in saliva. Int J Cancer 111:480–483

    CAS  PubMed  Google Scholar 

  64. Helander A, Curvall M (1991) Comparison of blood aldehyde dehydrogenase activities in moist snuff users, cigarette smokers and nontobacco users. Alcohol Clin Exp Res 15:1–6

    CAS  PubMed  Google Scholar 

  65. Salaspuro M (2007) Interrelationship between alcohol, smoking, acetaldehyde and cancer. Novartis Foundation Symposium 285:80–89; discussion 89–96, 198–199

    Google Scholar 

  66. Hollstein M, Sidransky D, Vogelstein B et al (1991) p53 mutations in human cancers. Science 253:49–53

    CAS  PubMed  Google Scholar 

  67. Haupt Y, Maya R, Kazaz A et al (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299

    CAS  PubMed  Google Scholar 

  68. Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358:15–16

    CAS  PubMed  Google Scholar 

  69. Parenti AR, Rugge M, Frizzera E et al (1995) p53 overexpression in the multistep process of esophageal carcinogenesis. Am J Surg Pathol 19:1418–1422

    Article  CAS  PubMed  Google Scholar 

  70. Egashira A, Morita M, Kakeji Y et al (2007) p53 gene mutations in esophageal squamous cell carcinoma and their relevance to etiology and pathogenesis: results in Japan and comparisons with other countries. Cancer Sci 98:1152–1156

    CAS  PubMed  Google Scholar 

  71. Oki E, Zhao Y, Yoshida R et al (2009) The difference in p53 mutations between cancers of the upper and lower gastrointestinal tract. Digestion 79 (Suppl 1):33–39

    Google Scholar 

  72. Paget V, Lechevrel M, Sichel F (2008) Acetaldehyde-induced mutational pattern in the tumour suppressor gene TP53 analysed by use of a functional assay, the FASAY (functional analysis of separated alleles in yeast). Mutat Res 652:12–19

    CAS  PubMed  Google Scholar 

  73. Noori P, Hou SM (2001) Mutational spectrum induced by acetaldehyde in the HPRT gene of human T lymphocytes resembles that in the p53 gene of esophageal cancers. Carcinogenesis 22:1825–1830

    CAS  PubMed  Google Scholar 

  74. Bodner SM, Minna JD, Jensen SM et al (1992) Expression of mutant p53 proteins in lung cancer correlates with the class of p53 gene mutation. Oncogene 7:743–749

    CAS  PubMed  Google Scholar 

  75. Saeki H, Ohno S, Araki K et al (2000) Alcohol consumption and cigarette smoking in relation to high frequency of p53 protein accumulation in oesophageal squamous cell carcinoma in the Japanese. Br J Cancer 82:1892–1894

    CAS  PubMed  Google Scholar 

  76. Kato H, Yoshikawa M, Miyazaki T et al (2001) Expression of p53 protein related to smoking and alcoholic beverage drinking habits in patients with esophageal cancers. Cancer Lett 167:65–72

    CAS  PubMed  Google Scholar 

  77. Kuwano H, Ohno S, Matsuda H et al (1988) Serial histologic evaluation of multiple primary squamous cell carcinomas of the esophagus. Cancer 61:1635–1638

    CAS  PubMed  Google Scholar 

  78. Ito S, Ohga T, Saeki H et al (2005) p53 mutation profiling of multiple esophageal carcinoma using laser capture microdissection to demonstrate field carcinogenesis. Int J Cancer 113:22–28

    CAS  PubMed  Google Scholar 

  79. el-Deiry WS, Harper JW, O’Connor PM et al (1994) WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54:1169–1174

    CAS  PubMed  Google Scholar 

  80. Bahl R, Arora S, Nath N et al (2000) Novel polymorphism in p21(waf1/cip1) cyclin dependent kinase inhibitor gene: association with human esophageal cancer. Oncogene 19:323–328

    CAS  PubMed  Google Scholar 

  81. Toh Y, Kuwano H, Sonoda K et al (1997) Correlation between reduced p21WAF1/CIP1 expression and abnormal p53 expression in esophageal carcinomas. Int J Oncol 11:703–708

    CAS  Google Scholar 

  82. Ruas M, Peters G (1998) The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1378:F115–F177

    CAS  PubMed  Google Scholar 

  83. Tokugawa T, Sugihara H, Tani T et al (2002) Modes of silencing of p16 in development of esophageal squamous cell carcinoma. Cancer Res 62:4938–4944

    CAS  PubMed  Google Scholar 

  84. Prueitt RL, Goodman JE, Valberg PA (2009) Radionuclides in cigarettes may lead to carcinogenesis via p16(INK4a) inactivation. J Environ Radioact 100:157–161

    CAS  PubMed  Google Scholar 

  85. Ito S, Ohga T, Saeki H et al (2007) Promoter hypermethylation and quantitative expression analysis of CDKN2A (p14ARF and p16INK4a) gene in esophageal squamous cell carcinoma. Anticancer Res 27:3345–3353

    CAS  PubMed  Google Scholar 

  86. Esteller M, Cordon-Cardo C, Corn PG et al (2001) p14ARF silencing by promoter hypermethylation mediates abnormal intracellular localization of MDM2. Cancer Res 61:2816–2821

    CAS  PubMed  Google Scholar 

  87. Baldin V, Lukas J, Marcote MJ et al (1993) Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 7:812–821

    CAS  PubMed  Google Scholar 

  88. Hu H, Zhang S, Zhu S (2009) Influence of aspirin and cigarette smoke extract on the expression of cyclin D1 and effects of cell cycle in esophageal squamous cell carcinoma cell line. Dis Esophagus 22:310–316

    CAS  PubMed  Google Scholar 

  89. Bizari L, Borim AA, Leite KR et al (2006) Alterations of the CCND1 and HER-2/neu (ERBB2) proteins in esophageal and gastric cancers. Cancer Genet Cytogenet 165:41–50

    CAS  PubMed  Google Scholar 

  90. Ozawa S, Ueda M, Ando N et al (1989) Prognostic significance of epidermal growth factor receptor in esophageal squamous cell carcinomas. Cancer 63:2169–2173

    CAS  PubMed  Google Scholar 

  91. Kitagawa Y, Ueda M, Ando N et al (1996) Further evidence for prognostic significance of epidermal growth factor receptor gene amplification in patients with esophageal squamous cell carcinoma. Clin Cancer Res 2:909–914

    CAS  PubMed  Google Scholar 

  92. Hanawa M, Suzuki S, Dobashi Y et al (2006) EGFR protein overexpression and gene amplification in squamous cell carcinomas of the esophagus. Int J Cancer 118:1173–1180

    CAS  PubMed  Google Scholar 

  93. Sudo T, Mimori K, Nagahara H et al (2007) Identification of EGFR mutations in esophageal cancer. Eur J Surg Oncol 33:44–48

    CAS  PubMed  Google Scholar 

  94. Dragnev KH, Petty WJ, Dmitrovsky E (2003) Retinoid targets in cancer therapy and chemoprevention. Cancer Biol Ther 2:S150–S156

    CAS  PubMed  Google Scholar 

  95. Lango M, Wentzel AL, Song JI et al (2003) Responsiveness to the retinoic acid receptor-selective retinoid LGD1550 correlates with abrogation of transforming growth factor alpha/epidermal growth factor receptor autocrine signaling in head and neck squamous carcinoma cells. Clin Cancer Res 9:4205–4213

    CAS  PubMed  Google Scholar 

  96. Wang XD, Liu C, Bronson RT et al (1999) Retinoid signaling and activator protein-1 expression in ferrets given beta-carotene supplements and exposed to tobacco smoke. J Natl Cancer Inst 91:60–66

    CAS  PubMed  Google Scholar 

  97. Song S, Xu XC (2001) Effect of benzo[a]pyrene diol epoxide on expression of retinoic acid receptor-beta in immortalized esophageal epithelial cells and esophageal cancer cells. Biochem Biophys Res Commun 281:872–877

    CAS  PubMed  Google Scholar 

  98. Song S, Lippman SM, Zou Y et al (2005) Induction of cyclooxygenase-2 by benzo[a]pyrene diol epoxide through inhibition of retinoic acid receptor-beta 2 expression. Oncogene 24:8268–8276

    CAS  PubMed  Google Scholar 

  99. Xu XC (2007) Tumor-suppressive activity of retinoic acid receptor-beta in cancer. Cancer Lett 253:14–24

    CAS  PubMed  Google Scholar 

  100. Zimmermann KC, Sarbia M, Weber AA et al (1999) Cyclooxygenase-2 expression in human esophageal carcinoma. Cancer Res 59:198–204

    CAS  PubMed  Google Scholar 

  101. Yoshino I, Kometani T, Shoji F et al (2007) Induction of epithelial–mesenchymal transition-related genes by benzo[a]pyrene in lung cancer cells. Cancer 110:369–374

    CAS  PubMed  Google Scholar 

  102. Yoshino I, Maehara Y (2007) Impact of smoking status on the biological behavior of lung cancer. Surg Today 37:725–734

    PubMed  Google Scholar 

  103. Davis R, Rizwani W, Banerjee S et al (2009) Nicotine promotes tumor growth and metastasis in mouse models of lung cancer. PLoS One 4:e7524

    PubMed  Google Scholar 

  104. Mori T, Aoki T, Matsubara T et al (1994) Frequent loss of heterozygosity in the region including BRCA1 on chromosome 17q in squamous cell carcinomas of the esophagus. Cancer Res 54:1638–1640

    CAS  PubMed  Google Scholar 

  105. Liang Z, Lippman SM, Kawabe A et al (2003) Identification of benzo(a)pyrene diol epoxide-binding DNA fragments using DNA immunoprecipitation technique. Cancer Res 63:1470–1474

    CAS  PubMed  Google Scholar 

  106. Ohta M, Inoue H, Cotticelli MG et al (1996) The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell 84:587–597

    CAS  PubMed  Google Scholar 

  107. Mori M, Mimori K, Shiraishi T et al (2000) Altered expression of Fhit in carcinoma and precarcinomatous lesions of the esophagus. Cancer Res 60:1177–1182

    CAS  PubMed  Google Scholar 

  108. Tanaka H, Shimada Y, Harada H et al (1998) Methylation of the 5′ CpG island of the FHIT gene is closely associated with transcriptional inactivation in esophageal squamous cell carcinomas. Cancer Res 58:3429–3434

    CAS  PubMed  Google Scholar 

  109. Pekarsky Y, Zanesi N, Palamarchuk A et al (2002) FHIT: from gene discovery to cancer treatment and prevention. Lancet Oncol 3:748–754

    CAS  PubMed  Google Scholar 

  110. Soma T, Kaganoi J, Kawabe A et al (2006) Nicotine induces the fragile histidine triad methylation in human esophageal squamous epithelial cells. Int J Cancer 119:1023–1027

    CAS  PubMed  Google Scholar 

  111. Morita M, Oyama T, Nakata S et al (2006) Expression of FHIT in esophageal epithelium and carcinoma: reference to drinking, smoking and multicentric carcinogenesis. Anticancer Res 26:2243–2248

    CAS  PubMed  Google Scholar 

  112. Naidoo R, Chetty R (1999) DNA repair gene status in oesophageal cancer. Mol Pathol 52:125–130

    CAS  PubMed  Google Scholar 

  113. Mimori K, Inoue H, Shiraishi T et al (2003) Microsatellite instability is often observed in esophageal carcinoma patients with allelic loss in the FHIT/FRA3B locus. Oncology 64:275–279

    CAS  PubMed  Google Scholar 

  114. Kakegawa T (2003) Forty years’ experience in surgical treatment for esophageal cancer. Int J Clin Oncol 8:277–288

    PubMed  Google Scholar 

  115. Toh Y, Sakaguchi Y, Ikeda O et al (2009) The triangulating stapling technique for cervical esophagogastric anastomosis after esophagectomy. Surg Today 39:201–206

    PubMed  Google Scholar 

  116. Toh Y, Yamamoto M, Endo K et al (2003) Histone H4 acetylation and histone deacetylase 1 expression in esophageal squamous cell carcinoma. Oncol Rep 10:333–338

    CAS  PubMed  Google Scholar 

  117. Toh Y, Ohga T, Endo K et al (2004) Expression of the metastasis-associated MTA1 protein and its relationship to deacetylation of the histone H4 in esophageal squamous cell carcinomas. Int J Cancer 110:362–367

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Brian Quinn for his linguistic comments.

Conflict of interest statement

The authors indicated no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Toh.

About this article

Cite this article

Toh, Y., Oki, E., Ohgaki, K. et al. Alcohol drinking, cigarette smoking, and the development of squamous cell carcinoma of the esophagus: molecular mechanisms of carcinogenesis. Int J Clin Oncol 15, 135–144 (2010). https://doi.org/10.1007/s10147-010-0057-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-010-0057-6

Keywords

Navigation