Skip to main content

Advertisement

Log in

Efficacy and utility of antifibrinolytics in pediatric spine surgery: a systematic review and network meta-analysis

  • Research
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Antifibrinolytics have gained increasing attention in minimizing blood loss and mitigating the risks associated with massive transfusions, including infection and coagulopathy in pediatric patients undergoing spine surgery. Nevertheless, the selection of optimal agent is still a matter of debate. We aim to review the utility of these agents and compare the efficacy of antifibrinolytics in pediatric and adolescent spine surgeries. A comprehensive search was performed in Scopus, Web of Science, and MEDLINE databases for relevant works. Studies providing quantitative data on predefined outcomes were included. Primary outcome was perioperative bleeding between the groups. Secondary outcomes included transfusion volume, rate of complications, and operation time. Twenty-eight studies were included in the meta-analysis incorporating 2553 patients. The use of Tranexamic acid (RoM: 0.71, 95%CI: [0.62–0.81], p < 0.001, I2 = 88%), Aprotinin (RoM: 0.54, 95%CI: [0.46–0.64], p < 0.001, I2 = 0%), and Epsilon-aminocaproic acid (RoM: 0.71, 95%CI: [0.62–0.81], p < 0.001, I2 = 60%) led to a 29%, 46%, and 29% reduction in perioperative blood loss, respectively. Network meta-analysis revealed higher probability of efficacy with Tranexamic acid compared to Epsilon-aminocaproic acid (P score: 0.924 vs. 0.571). The rate of complications was not statistically different between each two antifibrinolytic agent or antifibrinolytics compared to placebo or standard of care. Our network meta-analysis suggests a superior efficacy of all antifibrinolytics compared to standard of care/placebo in reducing blood loss and transfusion rate. Further adequately-powered randomized clinical trials are recommended to reach definite conclusion on comparative performance of these agents and to also provide robust objective assessments and standardized outcome data and safety profile on antifibrinolytics in pediatric and adolescent pediatric surgeries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets and codes generated for this meta-analysis is available from the corresponding author on reasonable request.

References

  1. Lebl DR, Urban MK (2020) Perioperative Care of the Complex Spine and Scoliosis Surgery Patient. Perioperative Care of the Orthopedic Patient. :379 – 92

  2. Janssen SJ, Braun Y, Wood KB, Cha TD, Schwab JH (2015) Allogeneic blood transfusions and postoperative infections after lumbar spine surgery. Spine J 15(5):901–909

    Article  PubMed  Google Scholar 

  3. Madjdpour C, Spahn D (2005) Allogeneic red blood cell transfusions: efficacy, risks, alternatives and indications. Br J Anaesth 95(1):33–42

    Article  CAS  PubMed  Google Scholar 

  4. Hu SS (2004) Blood loss in adult spinal surgery. Eur Spine J 13:S3–S5

    Article  PubMed  PubMed Central  Google Scholar 

  5. Henry DA, Carless PA, Moxey AJ, O’Connell D, Stokes BJ, Fergusson DA, Ker K Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Reviews. 2011(3).

  6. Wang M, Zheng X-F, Jiang L-S (2015) Efficacy and Safety of Antifibrinolytic Agents in reducing perioperative blood loss and transfusion requirements in scoliosis surgery: a systematic review and Meta-analysis. PLoS ONE 10(9):e0137886

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yang B, Li H, Wang D, He X, Zhang C, Yang P (2013) Systematic review and meta-analysis of perioperative intravenous tranexamic acid use in spinal surgery. PLoS ONE 8(2):e55436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li G, Sun T-W, Luo G, Zhang C (2017) Efficacy of antifibrinolytic agents on surgical bleeding and transfusion requirements in spine surgery: a meta-analysis. Eur Spine J 26:140–154

    Article  CAS  PubMed  Google Scholar 

  9. Mannucci PM (1998) Hemostatic drugs. N Engl J Med 339(4):245–253

    Article  CAS  PubMed  Google Scholar 

  10. Yuan C, Zhang H, He S (2013) Efficacy and safety of using antifibrinolytic agents in spine surgery: a meta-analysis. PLoS ONE 8(11):e82063

    Article  PubMed  PubMed Central  Google Scholar 

  11. Aghajanian S, Shafiee A, Ahmadi A, Elsamadicy AA (2023) Assessment of the impact of frailty on adverse surgical outcomes in patients undergoing surgery for intracranial tumors using modified frailty index: a systematic review and meta-analysis. J Clin Neurosci 114:120–128

    Article  PubMed  Google Scholar 

  12. Kasimian S, Skaggs DL, Sankar WN, Farlo J, Goodarzi M, Tolo VT (2008) Aprotinin in pediatric neuromuscular scoliosis surgery. Eur Spine J 17(12):1671–1675

    Article  PubMed  PubMed Central  Google Scholar 

  13. Khoshhal K, Mukhtar I, Clark P, Jarvis J, Letts M, Splinter W (2003) Efficacy of aprotinin in reducing blood loss in spinal fusion for idiopathic scoliosis. J Pediatr Orthop 23(5):661–664

    Article  PubMed  Google Scholar 

  14. Lykissas MG, Crawford AH, Chan G, Aronson LA, Al-Sayyad MJ (2013) The effect of tranexamic acid in blood loss and transfusion volume in adolescent idiopathic scoliosis surgery: a single-surgeon experience. J Child Orthop 7(3):245–249

    Article  PubMed  PubMed Central  Google Scholar 

  15. Neilipovitz DT, Murto K, Hall L, Barrowman NJ, Splinter WM (2001) A randomized trial of tranexamic acid to reduce blood transfusion for scoliosis surgery. Anesth Analg 93(1):82–87

    Article  CAS  PubMed  Google Scholar 

  16. Newton PO, Bastrom TP, Emans JB, Shah SA, Shufflebarger HL, Sponseller PD et al (2012) Antifibrinolytic agents reduce blood loss during pediatric vertebral column resection procedures. Spine (Phila Pa 1976) 37(23):E1459–E1463

    Article  PubMed  Google Scholar 

  17. Saleh AN, Mostafa RH (2018) Increased nociception following administration of different doses of tranexamic acid in adolescent idiopathic scoliosis surgery. Open Anesth J. ;12(1)

  18. Sethna NF, Zurakowski D, Brustowicz RM, Bacsik J, Sullivan LJ, Shapiro F (2005) Tranexamic acid reduces intraoperative blood loss in pediatric patients undergoing scoliosis surgery. Anesthesiology 102(4):727–732

    Article  CAS  PubMed  Google Scholar 

  19. Shapiro F, Zurakowski D, Sethna NF (2007) Tranexamic acid diminishes intraoperative blood loss and transfusion in spinal fusions for Duchenne muscular dystrophy scoliosis. Spine 32(20):2278–2283

    Article  PubMed  Google Scholar 

  20. Thompson GH, Florentino-Pineda I, Poe-Kochert C (2005) The role of Amicar in decreasing perioperative blood loss in idiopathic scoliosis. Spine 30(17 SUPPL):S94–S9

    Article  PubMed  Google Scholar 

  21. Thompson GH, Florentino-Pineda I, Poe-Kochert C, Armstrong DG, Son-Hing J (2008) Role of amicar in surgery for neuromuscular scoliosis. Spine 33(24):2626–2629

    Article  Google Scholar 

  22. Thompson GH, Florentino-Pineda I, Poe-Kochert C, Armstrong DG, Son-Hing JP (2008) The role of amicar in same-day anterior and posterior spinal fusion for idiopathic scoliosis. Spine 33(20):2237–2242

    Article  PubMed  Google Scholar 

  23. Verma K, Errico T, Diefenbach C, Hoelscher C, Peters A, Dryer J et al (2014) The relative efficacy of antifibrinolytics in adolescent idiopathic scoliosis: a prospective randomized trial. J Bone Joint Surg Am 96(10):e80

    Article  PubMed  Google Scholar 

  24. Yagi M, Hasegawa J, Nagoshi N, Iizuka S, Kaneko S, Fukuda K et al (2012) Does the intraoperative tranexamic acid decrease operative blood loss during posterior spinal fusion for treatment of adolescent idiopathic scoliosis? Spine (Phila Pa 1976) 37(21):E1336–E1342

    Article  PubMed  Google Scholar 

  25. Schur MD, Blumstein GW, Ross PA, Andras LM, Skaggs DL (2017) Second place award: tranexamic acid and intrathecal morphine are synergistic in reducing transfusion requirements in pediatric posterior spinal fusion. Curr Orthop Pract 28(4):341–347

    Article  Google Scholar 

  26. Ahlers CG, Lan M, Schoenecker JG, Borst AJ (2022) Blood loss and transfusion in a Pediatric scoliosis surgery cohort in the antifibrinolytic era. J Pediatr Hematol Oncol 44(3):e701–e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Berney MJ, Dawson PH, Phillips M, Lui DF, Connolly P (2015) Eliminating the use of allogeneic blood products in adolescent idiopathic scoliosis surgery. Eur J Orthop Surg Traumatol 25(Suppl 1):S219–S223

    Article  PubMed  Google Scholar 

  28. Bosch P, Kenkre TS, Soliman D, Londino JA, Novak NE (2019) Comparison of the Coagulation Profile of adolescent idiopathic scoliosis patients undergoing posterior spinal Fusion with and without Tranexamic Acid. Spine Deform 7(6):910–916

    Article  PubMed  Google Scholar 

  29. Chou SH, Lin SY, Wu MH, Tien YC, Jong YJ, Liang WC et al (2021) Intravenous tranexamic acid reduces blood loss and transfusion volume in scoliosis surgery for spinal muscular atrophy: results of a 20-year retrospective analysis. Int J Environ Res Public Health 18:19

    Article  Google Scholar 

  30. Cole JW, Murray DJ, Snider RJ, Bassett GS, Bridwell KH, Lenke LG (2003) Aprotinin reduces blood loss during spinal surgery in children. Spine (Phila Pa 1976) 28(21):2482–2485

    Article  PubMed  Google Scholar 

  31. Florentino-Pineda I, Blakemore LC, Thompson GH, Poe-Kochert C, Adler P, Tripi P (2001) The effect of ε-Aminocaproic acid on perioperative blood loss in patients with idiopathic scoliosis undergoing posterior spinal fusion: a preliminary prospective study. Spine 26(10):1147–1151

    Article  CAS  PubMed  Google Scholar 

  32. Florentino-Pineda I, Thompson GH, Poe-Kochert C, Huang RP, Haber LL, Blakemore LC (2004) The Effect of Amicar on Perioperative Blood loss in idiopathic scoliosis: the results of a prospective, randomized double-blind study. Spine 29(3):233–238

    Article  PubMed  Google Scholar 

  33. Goobie SM, Zurakowski D, Glotzbecker MP, McCann ME, Hedequist D, Brustowicz RM et al (2018) Tranexamic acid is efficacious at decreasing the rate of blood loss in adolescent scoliosis surgery: a randomized placebo-controlled trial. J Bone Joint Surg Am 100(23):2024–2032

    Article  PubMed  Google Scholar 

  34. Greenfield HM, Colovic V, Gharib MI, Rushman S, Patel DK, Will AM, Walker RWM (2004) Efficacy of aprotinin in reducing blood loss in paediatric patients undergoing major spinal surgery. Blood 104(11):742A–A

    Article  Google Scholar 

  35. Halanski MA, Cassidy JA, Hetzel S, Reischmann D, Hassan N (2014) The efficacy of Amicar Versus Tranexamic Acid in Pediatric spinal deformity surgery: a prospective, randomized, double-blinded pilot study. Spine Deform 2(3):191–197

    Article  PubMed  Google Scholar 

  36. Hideshima T, Akazawa T, Iinuma M, Torii Y, Ueno J, Yoshida A, Niki H (2021) Tranexamic acid reduces total blood loss and the amount of stored preoperative autologous blood donation needed for adolescent idiopathic scoliosis patients undergoing posterior spinal Fusion. Cureus 13(6):e15488

    PubMed  PubMed Central  Google Scholar 

  37. Dhawale AA, Shah SA, Sponseller PD, Bastrom T, Neiss G, Yorgova P et al (2012) Are antifibrinolytics helpful in decreasing blood loss and transfusions during spinal fusion surgery in children with cerebral palsy scoliosis? Spine 37(9):E549–E55

    Article  PubMed  Google Scholar 

  38. Ezhevskaya AA, Prusakova ZB, Zagrekov VI, Sosnin AV, Milenovic M (2018) Efficacy assessment of epidural blockade and tranexamic acid application in idiopathic scoliosis surgery. Sovrem Tehnol Med 10(4):164–172

    Article  Google Scholar 

  39. Halpern LM, Bronson WE, Kogan CJ (2021) A New Low Dose of Tranexamic Acid for decreasing the rate of blood loss in posterior spinal Fusion for adolescent idiopathic scoliosis. J Pediatr Orthop 41(6):333–337

    Article  PubMed  Google Scholar 

  40. Mihas A, Ramchandran S, Rivera S, Mansour A, Asghar J, Shufflebarger H, George S (2021) Safe and effective performance of pediatric spinal deformity surgery in patients unwilling to accept blood transfusion: a clinical study and review of literature. BMC Musculoskelet Disord 22(1):1–8

    Article  Google Scholar 

  41. Hassan N, Halanski M, Wincek J, Reischman D, Sanfilippo D, Rajasekaran S et al (2011) Blood management in pediatric spinal deformity surgery: review of a 2-year experience. Transfusion 51(10):2133–2141

    Article  PubMed  Google Scholar 

  42. Verma K, Errico TJ, Vaz KM, Lonner BS (2010) A prospective, randomized, double-blinded single-site control study comparing blood loss prevention of tranexamic acid (TXA) to epsilon aminocaproic acid (EACA) for corrective spinal surgery. BMC Surg 10:1–7

    Article  Google Scholar 

  43. Neilipovitz DT, Murto K, Hall L, Barrowman NJ, Splinter WM (2001) A randomized trial of tranexamic acid to reduce blood transfusion for scoliosis surgery. Anesth Analgesia 93(1):82–87

    Article  CAS  Google Scholar 

  44. Hovgesen NT, Larsen JB, Fenger-Eriksen C, Hansen AK, Hvas A-M (eds) (2021) Efficacy and safety of antifibrinolytic drugs in pediatric surgery: a systematic review. Seminars in Thrombosis and Hemostasis; : Thieme Medical Publishers, Inc. 333 Seventh Avenue, 18th Floor, New York, NY &#8230

  45. Colomina MJ, Bagó J, Vidal X, Mora L, Pellisé F (2009) Antifibrinolytic therapy in complex spine surgery: a case-control study comparing aprotinin and tranexamic acid. Orthopedics 32(2):91

    PubMed  Google Scholar 

  46. McNicol ED, Tzortzopoulou A, Schumann R, Carr DB, Kalra A Antifibrinolytic agents for reducing blood loss in scoliosis surgery in children. Cochrane Database Syst Reviews. 2016(9).

  47. Karimi S, Lu VM, Nambiar M, Phan K, Ambikaipalan A, Mobbs RJ (2019) Antifibrinolytic agents for paediatric scoliosis surgery: a systematic review and meta-analysis. Eur Spine J 28(5):1023–1034

    Article  PubMed  Google Scholar 

  48. Henry DA, Carless PA, Moxey AJ, O’Connell D, Stokes BJ, Fergusson DA, Ker K (2011) Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev 2011(3):Cd001886

    PubMed  PubMed Central  Google Scholar 

  49. Yuan L, Zeng Y, Chen Z-Q, Zhang X-L, Mai S, Song P, Tao L-Y (2019) Efficacy and safety of antifibrinolytic agents in spinal surgery: a network meta-analysis. Chin Med J 132(05):577–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ehresman J, Pennington Z, Schilling A, Medikonda R, Huq S, Merkel KR et al (2020) Cost-benefit analysis of tranexamic acid and blood transfusion in elective lumbar spine surgery for degenerative pathologies. J Neurosurgery: Spine 33(2):177–185

    Google Scholar 

  51. Bennett-Guerrero E, Sorohan JG, Gurevich ML, Kazanjian PE, Levy RR, Barberá AV et al (1997) Cost-benefit and efficacy of aprotinin compared with epsilon-aminocaproic acid in patients having repeated cardiac operations: a randomized, blinded clinical trial. Anesthesiology 87(6):1373–1380

    Article  CAS  PubMed  Google Scholar 

  52. Grant JA, Howard J, Luntley J, Hat-Der J, Aleissa S, Parsons D (2009) Perioperative Blood Transfusion requirements in Pediatric scoliosis surgery the efficacy of Tranexamic Acid. J Pediatr Orthop 29(3):300–304

    Article  PubMed  Google Scholar 

  53. Johnson DJ, Johnson CC, Goobie SM, Nami N, Wetzler JA, Sponseller PD, Frank SM (2017) High-dose Versus low-dose Tranexamic Acid to reduce transfusion requirements in Pediatric Scoliosis surgery. J Pediatr Orthop 37(8):e552–e7

    Article  PubMed  Google Scholar 

  54. Dong YL, Liang JQ, Tong BD, Shen JX, Zhao H, Li QY (2021) Combined topical and intravenous administration of tranexamic acid further reduces postoperative blood loss in adolescent idiopathic scoliosis patients undergoing spinal fusion surgery: a randomized controlled trial. BMC Musculoskelet Disord 22(1):7

    Article  Google Scholar 

  55. George S, Ramchandran S, Mihas A, George K, Mansour A, Errico T (2021) Topical tranexemic acid reduces intra-operative blood loss and transfusion requirements in spinal deformity correction in patients with adolescent idiopathic scoliosis. Spine Deform 9(5):1387–1393

    Article  PubMed  Google Scholar 

  56. Zhang Z, Wang LN, Yang X, Liu LM, Xiu P, Zhou ZJ et al (2021) The effect of multiple-dose oral versus intravenous tranexamic acid in reducing postoperative blood loss and transfusion rate after adolescent scoliosis surgery: a randomized controlled trial. Spine J 21(2):312–320

    Article  PubMed  Google Scholar 

  57. Food U (2007) rug Administration. Early communication about an ongoing safety review aprotinin injection (marketed as Trasylol)

  58. Soltani ZE, Hanaei S, Ohadi MAD, Maroufi SF, Meybodi KT, Khademi S et al (2022) Safety and efficacy of aprotinin versus tranexamic acid for reducing absolute blood loss and transfusion in pediatric patients undergoing craniosynostosis surgery: a randomized, double-blind, three-arm controlled trial. J Neurosurgery: Pediatr 29(5):551–559

    Google Scholar 

  59. Atasever AG, Eerens M, Van den Eynde R, Faraoni D, Rex S (2022) Efficacy and safety of aprotinin in paediatric cardiac surgery: a systematic review and meta-analysis. Eur J Anaesthesiol | EJA. ;39(4)

  60. Bouchez S, Van Gompel C, Schols G, Lecomte P, Lapage K, Jacobs SR et al (2021) Aprotinin use in high-risk cardiac surgery: recent insights from the Belgian aprotinin patient registry. J Cardiothorac Vasc Anesth 35:S29

    Article  Google Scholar 

  61. Benedetto U, Altman DG, Gerry S, Gray A, Lees B, Angelini GD et al Safety of Perioperative Aprotinin Administration during isolated coronary artery bypass graft surgery: insights from the ART (arterial revascularization trial). J Am Heart Assoc. 7(5):e007570

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

CRediT Author Statement: Sepehr Aghajanian: Methodology, Software, Validation, Formal analysis, Data curation, Writing- Original Draft, Writing – Review & Editing, Visualization, Project Administration Fateme Mohammadifard: Data curation, Writing – Original Draft Omid Kohandel Gargari: Data curation, Writing – Original Draft Arvin Naeimi: Data curation, Writing – Original Draft Ayad Bahadori Monfared: Formal analysis Aladine A. Elsamadicy: Conception, Writing – Review & Editing, Supervision.

Corresponding authors

Correspondence to Sepehr Aghajanian or Aladine A. Elsamadicy.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Conflict of interest

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghajanian, S., Mohammadifard, F., Kohandel Gargari, O. et al. Efficacy and utility of antifibrinolytics in pediatric spine surgery: a systematic review and network meta-analysis. Neurosurg Rev 47, 177 (2024). https://doi.org/10.1007/s10143-024-02424-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10143-024-02424-x

Keywords

Navigation