Skip to main content
Log in

Maxillary artery utilization in subcranial-intracranial bypass procedures: a comprehensive systematic review and pooled analysis

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

The utilization of the internal maxillary artery (IMAX) in subcranial-intracranial bypass for revascularization in complex aneurysms, tumors, or refractory ischemia shows promise. However, robust evidence concerning its outcomes is lacking. Hence, the authors embarked on a systematic review with pooled analysis to elucidate the efficacy of this approach. We systematically searched PubMed, Embase, and Web of Science databases following PRISMA guidelines. Included articles used the IMAX as a donor vessel for revascularizing an intracranial area and reported at least one of the following outcomes: patency, complications, or clinical data. Favorable outcomes were defined as the absence of neurologic deficits or improvement in the baseline condition. Complications were considered any adverse event directly related to the procedure. Out of 418 retrieved articles, 26 were included, involving 183 patients. Among them, 119 had aneurysms, 41 experienced ischemic strokes (transient or not), 2 had arterial occlusions, and 3 had neoplasia. Furthermore, 91.8% of bypasses used radial artery grafts, and 87.9% revascularized the middle cerebral artery territory. The median average follow-up period was 12 months (0.3–53.1). The post-operation patency rate was 99% (95% CI: 97–100%; I2=0%), while the patency rate at follow-up was 82% (95% CI: 68–96%; I2=77%). Complications occurred in 21% of cases (95% CI: 9–32%; I2=58%), with no significant procedure-related mortality in 0% (95% CI: 0–2%; I2=0%). Favorable outcomes were observed in 88% of patients (95% CI: 81–96%; I2=0%), and only 3% experienced ischemia (95% CI: 0–6%; I2=0%). The subcranial-intracranial bypass with the IMAX shows excellent postoperative patency and considerable favorable clinical outcomes. While complications exist, the procedure carries a minimal risk of mortality. However, long-term patency presents heterogeneous findings, warranting additional research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable

Abbreviations

IMAX:

Internal Maxillary Artery

RAG:

Radial Artery Graft

STA:

Superficial Temporal Artery

SC-IC:

Subcranial-Intracranial

MCA:

Middle Cerebral Artery

References

  1. Reddy VP, Singh R, McLelland MD et al (2022) Bibliometric analysis of the extracranial-intracranial bypass literature. World Neurosurg 161:198–205.e5. https://doi.org/10.1016/j.wneu.2022.01.095

    Article  PubMed  Google Scholar 

  2. Lawton MT, Hamilton MG, Morcos JJ, Spetzler RF (1996) Revascularization and aneurysm surgery: current techniques, indications, and outcome. Neurosurgery 38(1):83–94. https://doi.org/10.1097/00006123-199601000-00020

    Article  CAS  PubMed  Google Scholar 

  3. Yaşargil MG (1999) A legacy of microneurosurgery: memoirs, lessons, and axioms. Neurosurgery 45(5):1025–1092. https://doi.org/10.1097/00006123-199911000-00014

    Article  PubMed  Google Scholar 

  4. Newell DW, Dailey AT, Skirboll SL (1998) Intracranial vascular anastomosis using the microanastomotic system. Technical note. J Neurosurg 89(4):676–681. https://doi.org/10.3171/jns.1998.89.4.0676

    Article  CAS  PubMed  Google Scholar 

  5. Dai K, Song Z, Gao Y, Zheng J, Liu Z (2019) Occipital artery to upper posterior circulation bypass through the presigmoid approach in revascularization of the posterior circulation: An anatomical study. J Clin Neurosci 63:209–212. https://doi.org/10.1016/j.jocn.2019.01.020

    Article  PubMed  Google Scholar 

  6. Hong JH, Jung SC, Ryu HS, Kim TS, Joo SP (2023) Occipital artery bypass importance in unsuitable superficial temporal artery: Two case reports. World J Clin Cases 11(9):2091–2097. https://doi.org/10.12998/wjcc.v11.i9.2091

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sun MZ, Wu EM, Starke RM, Morcos JJ (2023) Clipping of recurrent right middle cerebral artery trifurcation aneurysm with extracranial-intracranial and intracranial-intracranial bypass using a radial artery graft: 2-dimensional operative video [published online ahead of print, 2023 Oct 11]. Oper Neurosurg (Hagerstown). https://doi.org/10.1227/ons.0000000000000933

  8. Nossek E, Costantino PD, Eisenberg M et al (2014) Internal maxillary artery-middle cerebral artery bypass: infratemporal approach for subcranial-intracranial (SC-IC) bypass. Neurosurgery 75(1):87–95. https://doi.org/10.1227/NEU.0000000000000340

    Article  PubMed  Google Scholar 

  9. Shi X, Qian H, Fang T, Zhang Y, Sun Y, Liu F (2015) Management of complex intracranial aneurysms with bypass surgery: a technique application and experience in 93 patients. Neurosurg Rev 38(1):109–120. https://doi.org/10.1007/s10143-014-0571-5

    Article  PubMed  Google Scholar 

  10. Uysal II, Buyukmumcu M, Dogan NU, Seker M, Ziylan T (2011) Clinical significance of maxillary artery and its branches: a cadaver study and review of the literature. Int J Morphol 29(4):1274–1281. https://doi.org/10.4067/s0717-95022011000400034

    Article  Google Scholar 

  11. Zaki Ghali MG, Srinivasan VM, Britz GW (2019) Maxillary artery to intracranial bypass. World Neurosurg 128:532–540. https://doi.org/10.1016/j.wneu.2019.03.015

    Article  PubMed  Google Scholar 

  12. Vrionis FD, Cano WG, Heilman CB (1996) Microsurgical anatomy of the infratemporal fossa as viewed laterally and superiorly. Neurosurgery 39(4):777–786. https://doi.org/10.1097/00006123-199610000-00027

    Article  CAS  PubMed  Google Scholar 

  13. Abdulrauf SI, Sweeney JM, Mohan YS, Palejwala SK (2011) Short segment internal maxillary artery to middle cerebral artery bypass: a novel technique for extracranial-to-intracranial bypass. Neurosurgery 68(3):804–809. https://doi.org/10.1227/NEU.0b013e3182093355

    Article  PubMed  Google Scholar 

  14. Shi XE, Qian H, KS KC, Zhang Y, Zhou Z, Sun Y (2011) Bypass of the maxillary to proximal middle cerebral artery or proximal posterior cerebral artery with radial artery graft. Acta Neurochir 153(8):1649–1655. https://doi.org/10.1007/s00701-011-1070-x

    Article  PubMed  Google Scholar 

  15. Ulku CH, Ustun ME, Buyukmumcu M, Cicekcibasi AE, Ziylan T (2004) Radial artery graft for bypass of the maxillary to proximal posterior cerebral artery: an anatomical and technical study. Acta Otolaryngol 124(7):858–862. https://doi.org/10.1080/00016480410017477

    Article  PubMed  Google Scholar 

  16. Karabulut AK, Ustün ME, Uysal II, Salbacak A (2001) Saphenous vein graft for bypass of the maxillary to supraclinoid internal carotid artery: an anatomical short study. Ann Vasc Surg 15(5):548–552. https://doi.org/10.1007/s10016-001-0027-6

    Article  CAS  PubMed  Google Scholar 

  17. Büyükmumcu M, Ustün ME, Seker M, Karabulut AK, Uysal YY (2003) Maxillary-to-petrous internal carotid artery bypass: an anatomical feasibility study. Surg Radiol Anat 25(5-6):368–371. https://doi.org/10.1007/s00276-003-0150-x

    Article  PubMed  Google Scholar 

  18. Wang L, Lu S, Cai L, Qian H, Tanikawa R, Shi X (2019) Internal maxillary artery bypass for the treatment of complex middle cerebral artery aneurysms. Neurosurg Focus 46(2):E10. https://doi.org/10.3171/2018.11.FOCUS18457

    Article  PubMed  Google Scholar 

  19. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J Clin Epidemiol 134:178–189. https://doi.org/10.1016/j.jclinepi.2021.03.001

    Article  PubMed  Google Scholar 

  20. Chiluwal AK, Nouri M, Knobel D, Dehdashti AR (2021) Surgical trapping of a large complex middle cerebral artery aneurysm with double-barrel bypass: 3-dimensional operative video. Oper Neurosurg (Hagerstown) 20(6):E444–E445. https://doi.org/10.1093/ons/opab028

    Article  PubMed  Google Scholar 

  21. Cho BR, Jang DK, Kim DS, Han YM (2023) Double-barreled IMA-M2 and STA-MCA bypass in severe stenosis of terminal internal carotid artery: three case reports. Acta Neurochir 165(3):631–636. https://doi.org/10.1007/s00701-023-05499-5

    Article  PubMed  Google Scholar 

  22. Doherty RJ, Moneley D, Brennan P, Javadpour M (2022) Internal maxillary artery to middle cerebral artery bypass for a complex recurrent middle cerebral artery aneurysm: case report and technical considerations. Br J Neurosurg 36(5):654–657. https://doi.org/10.1080/02688697.2020.1849545

    Article  PubMed  Google Scholar 

  23. Huang C, Qin S, Cao G, Huang W, Yu Y (2022) Internal maxillary artery-radial artery-middle cerebral artery bypass and STA-MCA bypass for the treatment of complex middle cerebral artery bifurcation aneurysm: a case report. Front Surg 8:773371. https://doi.org/10.3389/fsurg.2021.773371

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu Y, Shi X, Liu F, Sun Y, Qian H, Lei T (2017) Bilateral cavernous carotid aneurysms treated by two-stage extracranial-intracranial bypass followed by parent artery occlusion: case report and literature review. Acta Neurochir 159(9):1693–1698. https://doi.org/10.1007/s00701-017-3101-8

    Article  PubMed  Google Scholar 

  25. Nossek E, Costantino PD, Chalif DJ, Ortiz RA, Dehdashti AR, Langer DJ (2016) Forearm cephalic vein graft for short, "Middle"-flow, internal maxillary artery to middle cerebral artery bypass. Oper Neurosurg (Hagerstown) 12(2):99–105. https://doi.org/10.1227/NEU.0000000000001027

    Article  PubMed  Google Scholar 

  26. Patel NV, Ligas B, Gandhi S et al (2020) Internal maxillary to middle cerebral artery bypass using an anterior tibial artery graft, performed using a 3-dimensional exoscope: 2-dimensional operative video. Oper Neurosurg (Hagerstown) 19(2):E187. https://doi.org/10.1093/ons/opz379

    Article  PubMed  Google Scholar 

  27. Sergeev AV, Савелло АВ, Cherebillo VU, Kiskaev AI, Chemurzieva F (2021) Sequential approach of internal maxillary-to-middle cerebral artery bypass and endovascular occlusion for giant middle cerebral artery aneurysm: a case report. Egypt J Neurol Psychiatr Neurosurg 57(1). https://doi.org/10.1186/s41983-021-00288-2

  28. Wang L, Shi X, Liu F, Qian H (2016) Bypass surgery to treat symptomatic fusiform dilation of the internal carotid artery following craniopharyngioma resection: report of 2 cases. Neurosurg Focus 41(6):E17. https://doi.org/10.3171/2016.9.FOCUS16252

    Article  PubMed  Google Scholar 

  29. Wang L, Shi X, Qian H (2017) Flow reversal bypass surgery: a treatment option for giant serpentine and dolichoectatic aneurysms-internal maxillary artery bypass with an interposed radial artery graft followed by parent artery occlusion. Neurosurg Rev 40(2):319–328. https://doi.org/10.1007/s10143-016-0778-8

    Article  PubMed  Google Scholar 

  30. Wang L, Lu S, Qian H, Shi X (2017) Internal maxillary bypass for complex pediatric aneurysms. World Neurosurg 103:395–403. https://doi.org/10.1016/j.wneu.2017.04.055

    Article  PubMed  Google Scholar 

  31. Wang L, Lu S, Qian H, Shi X (2017) Internal maxillary artery bypass with radial artery graft treatment of giant intracranial aneurysms. World Neurosurg 105:568–584. https://doi.org/10.1016/j.wneu.2017.06.014

    Article  PubMed  Google Scholar 

  32. Wang L, Jing L, Liu F, Shi X (2023) How I do it: internal maxillary artery to middle cerebral artery bypass to manage giant thrombosed internal carotid artery aneurysm. Acta Neurochir 165(2):495–499. https://doi.org/10.1007/s00701-022-05463-9

    Article  PubMed  Google Scholar 

  33. White TG, Klironomos G, Langer DJ, Katz J, Dehdashti AR (2020) Combined internal maxillary artery to middle cerebral artery and in situ middle cerebral to middle cerebral artery bypass for complex middle cerebral artery aneurysm: 3-dimensional operative video. Oper Neurosurg (Hagerstown) 18(4):E121–E122. https://doi.org/10.1093/ons/opz166

    Article  PubMed  Google Scholar 

  34. Yağmurlu K, Kalani MYS, Martirosyan NL et al (2017) Maxillary artery to middle cerebral artery bypass: a novel technique for exposure of the maxillary artery. World Neurosurg 100:540–550. https://doi.org/10.1016/j.wneu.2016.12.130

    Article  PubMed  Google Scholar 

  35. Yu Z, Shi X, Qian H et al (2016) Internal maxillary artery to intracranial artery bypass: a case series of 31 patients with chronic internal carotid/middle cerebral arterial-sclerotic steno-occlusive disease. Neurol Res 38(5):420–428. https://doi.org/10.1080/01616412.2016.1177931

    Article  CAS  PubMed  Google Scholar 

  36. Yu Z, Shi X, Brohi SR, Qian H, Liu F, Yang Y (2017) Measurement of blood flow in an intracranial artery bypass from the internal maxillary artery by intraoperative duplex sonography. J Ultrasound Med 36(2):439–447. https://doi.org/10.7863/ultra.16.02011

    Article  PubMed  Google Scholar 

  37. Yu Z, Shi X, Zhou Z, Yang Y, Li P, Zhang Y (2020) Cerebral glucose metabolism changes in chronic ischemia patients following subcranial-intracranial bypass. Neurosurg Rev 43(5):1383–1389. https://doi.org/10.1007/s10143-019-01177-2

    Article  PubMed  Google Scholar 

  38. Zhang J, Shi X, Liu F, Sun Y, Qian H, Zhou Z (2019) Serpentine aneurysm of the posterior cerebral artery treated by internal maxillary artery bypass followed by parent artery occlusion: a case report and literature review. Acta Neurochir 161(6):1183–1189. https://doi.org/10.1007/s00701-019-03902-8

    Article  PubMed  Google Scholar 

  39. Wang X, Han G, Wang H et al (2023) Cerebral revascularization for complex middle cerebral artery aneurysms: surgical strategies and outcomes in a single center. Neurosurg Rev 46(1):68. https://doi.org/10.1007/s10143-023-01977-7

    Article  PubMed  Google Scholar 

  40. Shi X, Qian H, Singh KC et al (2013) Surgical management of vertebral and basilar artery aneurysms: a single center experience in 41 patients. Acta Neurochir 155(6):1087–1093. https://doi.org/10.1007/s00701-013-1656-6

    Article  PubMed  Google Scholar 

  41. Nouri M, Schneider JR, Shah K, White TG, Katz JM, Dehdashti AR (2021) Cerebral Bypass for Aneurysms in the Era of Flow Diversion: Single-Surgeon Case Series. Oper Neurosurg (Hagerstown) 21(5):303–311. https://doi.org/10.1093/ons/opab215

    Article  PubMed  Google Scholar 

  42. Chen Y, Chen P, Duan G, Li R, Li Z, Guo G (2023) Extracranial-intracranial bypass surgery for intracranial aneurysm of the anterior cerebral circulation: A systematic review and meta-analysis. Front Neurol 14:1174088. https://doi.org/10.3389/fneur.2023.1174088

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lawton MT, Spetzler RF (1999) Surgical strategies for giant intracranial aneurysms. Acta Neurochir Suppl 72:141–156. https://doi.org/10.1007/978-3-7091-6377-1_12

    Article  CAS  PubMed  Google Scholar 

  44. Drake CG (1979) Giant intracranial aneurysms: experience with surgical treatment in 174 patients. Clin Neurosurg 26:12–95. https://doi.org/10.1093/neurosurgery/26.cn_suppl_1.12

    Article  CAS  PubMed  Google Scholar 

  45. Britz GW (2014) Flow diversion is not yet the complete package. World Neurosurg 82(6):1005–1006. https://doi.org/10.1016/j.wneu.2014.02.017

    Article  PubMed  Google Scholar 

  46. Krishna C, Hopkins LN (2014) Flow diversion: exciting new technology in its infancy. World Neurosurg 82(6):1003–1004. https://doi.org/10.1016/j.wneu.2013.11.005

    Article  PubMed  Google Scholar 

  47. Siddiqui AH, Abla AA, Kan P et al (2012) Panacea or problem: flow diverters in the treatment of symptomatic large or giant fusiform vertebrobasilar aneurysms. J Neurosurg 116(6):1258–1266. https://doi.org/10.3171/2012.2.JNS111942

    Article  PubMed  Google Scholar 

  48. Szikora I, Turányi E, Marosfoi M (2015) Evolution of flow-diverter endothelialization and thrombus organization in giant fusiform aneurysms after flow diversion: a histopathologic study. AJNR Am J Neuroradiol 36(9):1716–1720. https://doi.org/10.3174/ajnr.A4336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ma Y, Wang T, Wang H et al (2023) Extracranial-Intracranial bypass and risk of stroke and death in patients with symptomatic artery occlusion: the CMOSS Randomized Clinical Trial. JAMA 330(8):704–714. https://doi.org/10.1001/jama.2023.13390

    Article  PubMed  Google Scholar 

  50. Powers WJ, Clarke WR, Grubb RL Jr et al (2011) Extracranial-intracranial bypass surgery for stroke prevention in hemodynamic cerebral ischemia: the Carotid Occlusion Surgery Study randomized trial [published correction appears in JAMA. 2011 Dec 28;306(24):2672. Obviagele, Bruce [corrected to Ovbiagele, Bruce]]. JAMA 306(18):1983–1992. https://doi.org/10.1001/jama.2011.1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo de Barros Oliveira.

Ethics declarations

Ethical approval

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, L.d.B., Cieslak, P.H., Marques, G.N. et al. Maxillary artery utilization in subcranial-intracranial bypass procedures: a comprehensive systematic review and pooled analysis. Neurosurg Rev 47, 41 (2024). https://doi.org/10.1007/s10143-023-02265-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10143-023-02265-0

Keywords

Navigation