Skip to main content
Log in

Long-term functional outcomes and complications of microsurgical resection of brainstem cavernous malformations: a systematic review and meta-analysis

  • Research
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Brainstem cavernous malformations (CMs) encompass up to 20% of all intracranial CMs and are considered more aggressive than cerebral CMs because of their high annual bleeding rates. Microsurgical resection remains the primary treatment modality for CMs, but long-term functional outcomes and complications are heterogenous in the literature. The authors performed a systematic review on brainstem CMs in 4 databases: PubMed, EMBASE, Cochrane library, and Google Scholar. We included studies that reported on the long-term functional outcomes and complications of brainstem CMs microsurgical resection. A meta-analysis was performed and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The search yielded 4781 results, of which 19 studies met our inclusion criteria. Microsurgery was performed on 940 patients (mean age 35 years, 46.9% females). Most of the brainstem CMs were located in the pons (n = 475). The pooled proportions of improved, stable, and worsened functional outcomes after microsurgical resection of brainstem CMs were 56.7% (95% CI 48.4–64.6), 28.6% (95% CI 22.4–35.7), and 12.6% (95% CI 9.6–16.2), respectively. CMs located in the medulla were significantly (p = 0.003) associated with a higher proportion of improved outcome compared with those in the pons and midbrain. Complete resection was achieved in 93.3% (95% CI 89.8–95.7). The immediate postoperative complication rate was 37.2% (95% CI 29.3–45.9), with new-onset cranial nerve deficit being the most common complication. The permanent morbidity rate was 17.3% (95% CI 10.5–27.1), with a low mortality rate of 1% from the compiled study population during a mean follow-up of 58 months. Our analysis indicates that microsurgical resection of brainstem CMs can result in favorable long-term functional outcomes with transient complications in the majority of patients. Complete microsurgical resection of the CM is associated with a lower incidence of CM hemorrhage and the morbidity related to it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data and materials used in this systematic review are available upon request.

References

  1. Robinson JR, Awad IA, Magdinec M, Paranandi L (1993) Factors predisposing to clinical disability in patients with cavernous malformations of the brain. Neurosurgery 32:730–735; discussion 735–736. https://doi.org/10.1227/00006123-199305000-00005

  2. Simard JM, Garcia-Bengochea F, Ballinger WE et al (1986) Cavernous angioma: a review of 126 collected and 12 new clinical cases. Neurosurgery 18:162–172. https://doi.org/10.1227/00006123-198602000-00008

    Article  PubMed  CAS  Google Scholar 

  3. Moriarity JL, Clatterbuck RE, Rigamonti D (1999) The natural history of cavernous malformations. Neurosurg Clin N Am 10:411–417. https://doi.org/10.1016/S1042-3680(18)30175-X

    Article  PubMed  CAS  Google Scholar 

  4. Taslimi S, Modabbernia A, Amin-Hanjani S et al (2016) Natural history of cavernous malformation: Systematic review and meta-analysis of 25 studies. Neurology 86:1984–1991. https://doi.org/10.1212/WNL.0000000000002701

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lawton MT, Kim H, McCulloch CE et al (2010) A supplementary grading scale for selecting patients with brain arteriovenous malformations for surgery. Neurosurgery 66:702–713; discussion 713. https://doi.org/10.1227/01.NEU.0000367555.16733.E1

  6. Garcia RM, Ivan ME, Lawton MT (2015) Brainstem cavernous malformations: surgical results in 104 patients and a proposed grading system to predict neurological outcomes. Neurosurgery 76:265. https://doi.org/10.1227/NEU.0000000000000602

    Article  PubMed  Google Scholar 

  7. Potts MB, Young WL, Lawton MT (2013) Deep arteriovenous malformations in the basal ganglia, thalamus, and insula: microsurgical management, techniques, and results. Neurosurgery 73:417–429. https://doi.org/10.1227/NEU.0000000000000004

    Article  PubMed  Google Scholar 

  8. Hori T, Chernov M, Alshebib YA et al (2023) Long-term outcomes after surgery for brainstem cavernous malformations: analysis of 46 consecutive cases. J Neurosurg 138:900–909. https://doi.org/10.3171/2022.7.JNS22314

    Article  PubMed  Google Scholar 

  9. Nathal E, Patiño-Rodriguez HM, Arauz A et al (2018) Risk factors for unfavorable outcomes in surgically treated brainstem cavernous malformations. World Neurosurg 111:e478–e484. https://doi.org/10.1016/j.wneu.2017.12.105

    Article  PubMed  Google Scholar 

  10. Li D, Jiao Y-M, Wang L et al (2018) Surgical outcome of motor deficits and neurological status in brainstem cavernous malformations based on preoperative diffusion tensor imaging: a prospective randomized clinical trial. J Neurosurg 130:286–301. https://doi.org/10.3171/2017.8.JNS17854

    Article  PubMed  Google Scholar 

  11. Zhang S, Lin S, Hui X et al (2017) Surgical treatment of cavernous malformations involving medulla oblongata. J Clin Neurosci Off J Neurosurg Soc Australas 37:63–68. https://doi.org/10.1016/j.jocn.2016.11.014

    Article  Google Scholar 

  12. Zhang S, Li H, Liu W et al (2016) Surgical treatment of hemorrhagic brainstem cavernous malformations. Neurol India 64:1210–1219. https://doi.org/10.4103/0028-3886.193825

    Article  PubMed  Google Scholar 

  13. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  14. Banks JL, Marotta CA (2007) Outcomes validity and reliability of the modified Rankin scale: implications for stroke clinical trials: a literature review and synthesis. Stroke 38:1091–1096. https://doi.org/10.1161/01.STR.0000258355.23810.c6

    Article  PubMed  Google Scholar 

  15. de Haan R, Aaronson N, Limburg M et al (1993) Measuring quality of life in stroke. Stroke 24:320–327. https://doi.org/10.1161/01.str.24.2.320

    Article  PubMed  Google Scholar 

  16. Wells G, Shea B, O’Connell D et al (n.d.) The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomized Studies in Meta- Analysis. Canada. https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

  17. Sterne JA, Egger M (2001) Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol 54:1046–1055. https://doi.org/10.1016/s0895-4356(01)00377-8

    Article  PubMed  CAS  Google Scholar 

  18. Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634. https://doi.org/10.1136/bmj.315.7109.629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Viechtbauer W (2010) Conducting Meta-Analyses in R with the metafor Package. J Stat Softw 36:1–48. https://doi.org/10.18637/jss.v036.i03

  20. R Core Team (2021) R: A Language and environment for statistical computing. Austria. https://www.R-project.org/

  21. Lipsey MW, Wilson DB (2001) Practical meta-analysis. Sage Publications Inc, Thousand Oaks, CA, US

    Google Scholar 

  22. Goto Y, Hino A, Hashimoto N (2021) A comparative analysis of the modified Rankin Scale, Karnofsky Performance Status and Kurtzke expanded disability status scale in the perioperative management of patients with brainstem cavernous malformations. Clin Neurol Neurosurg 207:106785. https://doi.org/10.1016/j.clineuro.2021.106785

  23. Menon G, Gopalakrishnan CV, Rao BRM et al (2011) A single institution series of cavernomas of the brainstem. J Clin Neurosci Off J Neurosurg Soc Australas 18:1210–1214. https://doi.org/10.1016/j.jocn.2011.01.022

    Article  Google Scholar 

  24. Huang AP-H, Chen J-S, Yang C-C et al (2010) Brain stem cavernous malformations. J Clin Neurosci Off J Neurosurg Soc Australas 17:74–79. https://doi.org/10.1016/j.jocn.2009.06.009

    Article  Google Scholar 

  25. Oertel J, Fischer G, Linsler S et al (2022) Endoscope-assisted resection of brainstem cavernous malformations. Neurosurg Rev 45:2823–2836. https://doi.org/10.1007/s10143-022-01793-5

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li D, Yang Y, Hao S-Y et al (2013) Hemorrhage risk, surgical management, and functional outcome of brainstem cavernous malformations. J Neurosurg 119:996–1008. https://doi.org/10.3171/2013.7.JNS13462

    Article  PubMed  Google Scholar 

  27. Cannizzaro D, Sabatino G, Mancarella C et al (2019) Management and surgical approaches of brainstem cavernous malformations: our experience and literature review. Asian J Neurosurg 14:131–139. https://doi.org/10.4103/ajns.AJNS_290_17

    Article  PubMed  PubMed Central  Google Scholar 

  28. Velz J, Özkaratufan S, Krayenbühl N et al (2022) Pediatric brainstem cavernous malformations: 2-center experience in 40 children. J Neurosurg Pediatr 1–12. https://doi.org/10.3171/2022.1.PEDS21538

  29. Kikuta K, Nozaki K, Takahashi JA et al (2004) Postoperative evaluation of microsurgical resection for cavernous malformations of the brainstem. J Neurosurg 101:607–612. https://doi.org/10.3171/jns.2004.101.4.0607

    Article  PubMed  Google Scholar 

  30. Lashkarivand A, Ringstad G, Eide PK (2020) Surgery for brainstem cavernous malformations: association between preoperative grade and postoperative quality of life. Oper Neurosurg Hagerstown Md 18:590–598. https://doi.org/10.1093/ons/opz337

    Article  Google Scholar 

  31. Xie M-G, Xiao X-R, Guo F-Z et al (2018) Surgical management and functional outcomes of cavernous malformations involving the medulla oblongata. World Neurosurg 119:e643–e652. https://doi.org/10.1016/j.wneu.2018.07.229

    Article  PubMed  Google Scholar 

  32. Li D, Hao S-Y, Tang J et al (2014) Surgical management of pediatric brainstem cavernous malformations. J Neurosurg Pediatr 13:484–502. https://doi.org/10.3171/2014.2.PEDS13536

    Article  PubMed  Google Scholar 

  33. Mai JC, Ramanathan D, Kim LJ, Sekhar LN (2013) Surgical resection of cavernous malformations of the brainstem: evolution of a minimally invasive technique. World Neurosurg 79:691–703. https://doi.org/10.1016/j.wneu.2012.04.030

    Article  PubMed  Google Scholar 

  34. Ren Y, Li J, Tao C et al (2017) Surgical treatment of cavernous malformations involving the midbrain: a single-center case series of 34 patients. World Neurosurg 107:753–763. https://doi.org/10.1016/j.wneu.2017.08.117

    Article  PubMed  Google Scholar 

  35. Xie S, Xiao X-R, Li H et al (2020) Surgical treatment of pontine cavernous malformations via subtemporal transtentorial and intradural anterior transpetrosal approaches. Neurosurg Rev 43:1179–1189. https://doi.org/10.1007/s10143-019-01156-7

    Article  PubMed  Google Scholar 

  36. Porter RW, Detwiler PW, Spetzler RF et al (1999) Cavernous malformations of the brainstem: experience with 100 patients. J Neurosurg 90:50–58. https://doi.org/10.3171/jns.1999.90.1.0050

    Article  PubMed  CAS  Google Scholar 

  37. Wang C, Liu A, Zhang J et al (2003) Surgical management of brain-stem cavernous malformations: report of 137 cases. Surg Neurol 59:444–454; discussion 454. https://doi.org/10.1016/s0090-3019(03)00187-3

  38. Hasegawa T, McInerney J, Kondziolka D et al (2002) Long-term results after stereotactic radiosurgery for patients with cavernous malformations. Neurosurgery 50:1190–1197; discussion 1197–1198. https://doi.org/10.1097/00006123-200206000-00003

  39. Bozinov O, Hatano T, Burkhardt JK et al (2010) Current clinical management of brainstem cavernomas. Swiss Med Wkly 140:w13120–w13120. https://doi.org/10.4414/smw.2010.13120

    Article  PubMed  Google Scholar 

  40. Zuurbier SM, Hickman CR, Rinkel LA et al (2022) Association between beta-blocker or statin drug use and the risk of hemorrhage from cerebral cavernous malformations. Stroke 53:2521–2527. https://doi.org/10.1161/STROKEAHA.121.037009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Lanfranconi S, Scola E, Meessen JMTA et al (2023) Safety and efficacy of propranolol for treatment of familial cerebral cavernous malformations (Treat_CCM): a randomised, open-label, blinded-endpoint, phase 2 pilot trial. Lancet Neurol 22:35–44. https://doi.org/10.1016/S1474-4422(22)00409-4

    Article  PubMed  CAS  Google Scholar 

  42. Oldenburg J, Malinverno M, Globisch MA et al (2021) Propranolol reduces the development of lesions and rescues barrier function in cerebral cavernous malformations: a preclinical study. Stroke 52:1418–1427. https://doi.org/10.1161/STROKEAHA.120.029676

    Article  PubMed  CAS  Google Scholar 

  43. Shenkar R, Moore T, Benavides C et al (2022) Propranolol as therapy for cerebral cavernous malformations: a cautionary note. J Transl Med 20:160. https://doi.org/10.1186/s12967-022-03360-4

    Article  PubMed  PubMed Central  Google Scholar 

  44. Loan JJM, Bacon A, van Beijnum J et al (2023) Feasibility of comparing medical management and surgery (with neurosurgery or stereotactic radiosurgery) with medical management alone in people with symptomatic brain cavernoma - protocol for the Cavernomas: A Randomised Effectiveness (CARE) pilot trial. BMJ Open 13:e075187. https://doi.org/10.1136/bmjopen-2023-075187

    Article  PubMed  PubMed Central  Google Scholar 

  45. Catapano JS, Benner D, Rhodenhiser EG et al (2023) Safety of brainstem safe entry zones: comparison of microsurgical outcomes associated with superficial, exophytic, and deep brainstem cavernous malformations. J Neurosurg 139:113–123. https://doi.org/10.3171/2022.9.JNS222012

    Article  PubMed  Google Scholar 

  46. Catapano JS, Rumalla K, Srinivasan VM et al (2022) A taxonomy for brainstem cavernous malformations: subtypes of medullary lesions. J Neurosurg 138:128–146. https://doi.org/10.3171/2022.3.JNS22626

    Article  PubMed  Google Scholar 

  47. Catapano JS, Rumalla K, Srinivasan VM et al (2022) A taxonomy for brainstem cavernous malformations: subtypes of pontine lesions. Part 1: basilar, peritrigeminal, and middle peduncular. J Neurosurg 137:1462–1476. https://doi.org/10.3171/2022.1.JNS212690

    Article  Google Scholar 

  48. Catapano JS, Rumalla K, Srinivasan VM et al (2022) A taxonomy for brainstem cavernous malformations: subtypes of pontine lesions. Part 2: inferior peduncular, rhomboid, and supraolivary. J Neurosurg 137:1477–1490. https://doi.org/10.3171/2022.1.JNS212691

    Article  Google Scholar 

  49. Catapano JS, Rumalla K, Srinivasan VM et al (2021) A taxonomy for brainstem cavernous malformations: subtypes of midbrain lesions. J Neurosurg 136:1667–1686. https://doi.org/10.3171/2021.8.JNS211694

    Article  PubMed  Google Scholar 

  50. Gross BA, Batjer HH, Awad IA et al (2013) Brainstem cavernous malformations: 1390 surgical cases from the literature. World Neurosurg 80:89–93. https://doi.org/10.1016/j.wneu.2012.04.002

    Article  PubMed  Google Scholar 

  51. Li D, Wu Z-Y, Liu P-P et al (2020) Natural history of brainstem cavernous malformations: prospective hemorrhage rate and adverse factors in a consecutive prospective cohort. J Neurosurg 134:917–928. https://doi.org/10.3171/2019.12.JNS192856

    Article  PubMed  Google Scholar 

  52. Kearns KN, Chen C-J, Tvrdik P et al (2019) Outcomes of surgery for brainstem cavernous malformations. Stroke 50:2964–2966. https://doi.org/10.1161/STROKEAHA.119.026120

    Article  PubMed  Google Scholar 

  53. Cenzato M, Stefini R, Ambrosi C, Giovanelli M (2008) Post-operative remnants of brainstem cavernomas: incidence, risk factors and management. Acta Neurochir (Wien) 150:879–886; discussion 887. https://doi.org/10.1007/s00701-008-0008-4

Download references

Acknowledgements

We would like to thank Kristin Kraus, MSc for her editorial assistance.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

HA, WC, JM, MTL, MJL, MAL: conception and design, provision of study patient, data analysis and interpretation, manuscript writing, final approval of the manuscript. CK, OB, IA, AS, and AM: collection and assembly of data, data analysis and interpretation, manuscript writing. All authors: manuscript.

Corresponding author

Correspondence to Hussam Abou-Al-Shaar.

Ethics declarations

Ethical Approval

Not applicable.

Competing interests

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

10143_2023_2152_MOESM1_ESM.png

Supplementary file1 (PNG 36 KB) Supplementary Figure 1: Newcastle-Ottawa scale for non-randomized studies to determine the quality of the studies

Supplementary file2 (PNG 332 KB) Supplementary Figure 2: Funnel plots for determining the risk of publication bias

Supplementary file3 (DOCX 19.8 KB) Supplementary Table 1: Summary of the presentation based on the location of the CM

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albalkhi, I., Shafqat, A., Bin-Alamer, O. et al. Long-term functional outcomes and complications of microsurgical resection of brainstem cavernous malformations: a systematic review and meta-analysis. Neurosurg Rev 46, 252 (2023). https://doi.org/10.1007/s10143-023-02152-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10143-023-02152-8

Keywords

Navigation