Skip to main content

Advertisement

Log in

Combined application of neural stem/progenitor cells and scaffolds on locomotion recovery following spinal cord injury in rodents: a systematic review and meta-analysis

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Background

This present study evaluates the pre-clinical evidence on the efficacy of NS/PC and scaffold (NS/PC + scaffold) transplantation on locomotor recovery after traumatic spinal cord injury (SCI).

Method

Two independent reviewers screened the records gathered through a systematic search in MEDLINE, Embase, Scopus, and Web of Sciences databases. Studies on rats/mice evaluating the efficacy of simultaneous transplantation of NS/PCs and scaffold in the treatment of SCI were included. The results were reported as standardized mean difference (SMD) and 95% confidence interval (95% CI).

Results

Forty-seven articles were retrieved. Analyses showed that NS/PC + scaffold transplantation significantly improved locomotion in animals with SCI compared to that of the non-treatment group (SMD = 2.71, 95% CI: 1.89 to 3.54; I2 = 95.15%, p < 0.0001), scaffold alone (SMD = 2.28; 95% CI: 1.56 to 3.00; I2 = 94.38%; p < 0.0001), and NS/PCs alone (SMD = 1.74, 95% CI: 0.64 to 2.83; I2 = 92.02%, p < 0.0001). Moreover, the effectiveness of the treatment significantly increases when PLGA-based scaffolds and antibiotics are used. In addition, the NS/PC + scaffold transplantation during the first week after injury led to a significant improvement in locomotion, while concomitant transplantation of NS/PC + scaffold did not improve locomotion in cervical lesions.

Conclusion

The findings showed that using NS/PCs with scaffold not only improves locomotion recovery, but also is superior to NS/PCs alone and scaffold alone. Future experiments and translational clinical studies are recommended to focus on the assessment of the safety and efficacy of the application of NS/PC + scaffold on SCI recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  1. Abdolahi S, Aligholi H, Khodakaram-Tafti A, Khaleghi Ghadiri M, Stummer W, Gorji A (2021) Improvement of rat spinal cord injury following lentiviral vector-transduced neural stem/progenitor cells derived from human epileptic brain tissue transplantation with a self-assembling peptide scaffold. Mol Neurobiol 58(6):2481–2493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Assinck P, Duncan GJ, Hilton BJ, Plemel JR, Tetzlaff W (2017) Cell transplantation therapy for spinal cord injury. Nat Neurosci 20(05):637–647

    Article  CAS  PubMed  Google Scholar 

  3. Baptiste DC, Fehlings MG (2007) Update on the treatment of spinal cord injury. Prog Brain Res 161:217–233

    Article  CAS  PubMed  Google Scholar 

  4. Beattie MS, Farooqui AA, Bresnahan JC (2000) Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma 17(10):915–925

    Article  CAS  PubMed  Google Scholar 

  5. Bozkurt G, Mothe AJ, Zahir T, Kim H, Shoichet MS, Tator CH (2010) Chitosan channels containing spinal cord-derived stem/progenitor cells for repair of subacute spinal cord injury in the rat. Neurosurgery 67(6):1733–1744

    Article  PubMed  Google Scholar 

  6. Dedeepiya VD, William JB, Parthiban JK, Chidambaram R, Balamurugan M, Kuroda S, Iwasaki M, Preethy S, Abraham SJ (2014) The known-unknowns in spinal cord injury, with emphasis on cell-based therapies - a review with suggestive arenas for research. Expert Opin Biol Ther 14(5):617–634

    Article  PubMed  Google Scholar 

  7. Doleman B, Freeman SC, Lund JN, Williams JP, Sutton AJ (2020) Funnel plots may show asymmetry in the absence of publication bias with continuous outcomes dependent on baseline risk: presentation of a new publication bias test. Res Synth Methods 11(4):522–534

    Article  PubMed  Google Scholar 

  8. Donnelly DJ, Popovich PG (2008) Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 209(2):378–388

    Article  CAS  PubMed  Google Scholar 

  9. Du BL, Zeng X, Ma YH, Lai BQ, Wang JM, Ling EA, Wu JL, Zeng YS (2015) Graft of the gelatin sponge scaffold containing genetically-modified neural stem cells promotes cell differentiation, axon regeneration, and functional recovery in rat with spinal cord transection. J Biomed Mater Res A 103(4):1533–1545

    Article  PubMed  Google Scholar 

  10. Fan L, Liu C, Chen X, Zou Y, Zhou Z, Lin C, Tan G, Zhou L, Ning C, Wang Q (2018) Directing induced pluripotent stem cell derived neural stem cell fate with a three-dimensional biomimetic hydrogel for spinal cord injury repair. ACS Appl Mater Interfaces 10(21):17742–17755

    Article  CAS  PubMed  Google Scholar 

  11. Fitzharris M, Cripps RA, Lee BB (2014) Estimating the global incidence of traumatic spinal cord injury. Spinal Cord 52(2):117–122

    Article  CAS  PubMed  Google Scholar 

  12. Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, Saenz AD, Pasquale-Styles M, Dietrich WD, Weaver LC (2006) The cellular inflammatory response in human spinal cords after injury. Brain 129(12):3249–3269

    Article  PubMed  Google Scholar 

  13. Geissler SA, Sabin AL, Besser RR, Gooden OM, Shirk BD, Nguyen QM, Khaing ZZ, Schmidt CE (2018) Biomimetic hydrogels direct spinal progenitor cell differentiation and promote functional recovery after spinal cord injury. J Neural Eng 15(2):025004

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gong Z, Lei D, Wang C, Yu C, Xia K, Shu J, Ying L, Du J, Wang J, Huang X, Ni L, Wang C, Lin J, Li F, You Z, Liang C (2020) Bioactive elastic scaffolds loaded with neural stem cells promote rapid spinal cord regeneration. ACS Biomater Sci Eng 6(11):6331–6343

    Article  CAS  PubMed  Google Scholar 

  15. Gunther MI, Weidner N, Muller R, Blesch A (2015) Cell-seeded alginate hydrogel scaffolds promote directed linear axonal regeneration in the injured rat spinal cord. Acta Biomater 27:140–150

    Article  PubMed  Google Scholar 

  16. Guo X, Zahir T, Mothe A, Shoichet MS, Morshead CM, Katayama Y, Tator CH (2012) The effect of growth factors and soluble Nogo-66 receptor protein on transplanted neural stem/progenitor survival and axonal regeneration after complete transection of rat spinal cord. Cell Transplant 21(6):1177–1197

    Article  PubMed  Google Scholar 

  17. Ham TR, Pukale DD, Hamrangsekachaee M, Leipzig ND (2020) Subcutaneous priming of protein-functionalized chitosan scaffolds improves function following spinal cord injury. Mater Sci Eng C Mater Biol Appl 110:110656

    Article  CAS  PubMed  Google Scholar 

  18. Hassannejad Z, Sharif-Alhoseini M, Shakouri-Motlagh A, Vahedi F, Zadegan SA, Mokhatab M, Rezvan M, Saadat S, Shokraneh F, Rahimi-Movaghar V (2016) Potential variables affecting the quality of animal studies regarding pathophysiology of traumatic spinal cord injuries. Spinal Cord 54(8):579–583

    Article  CAS  PubMed  Google Scholar 

  19. Hatami M, Mehrjardi NZ, Kiani S, Hemmesi K, Azizi H, Shahverdi A, Baharvand H (2009) Human embryonic stem cell-derived neural precursor transplants in collagen scaffolds promote recovery in injured rat spinal cord. Cytotherapy 11(5):618–630

    Article  CAS  PubMed  Google Scholar 

  20. Hosseini M, Yousefifard M, Aziznejad H, Nasirinezhad F (2015) The effect of bone marrow–derived mesenchymal stem cell transplantation on allodynia and hyperalgesia in neuropathic animals: a systematic review with meta-analysis. Biol Blood Marrow Transplantat 21(9):1537–1544

    Article  Google Scholar 

  21. Hosseini SM, Sharafkhah A, Koohi-Hosseinabadi O, Semsar-Kazerooni M (2016a) Transplantation of neural stem cells cultured in alginate scaffold for spinal cord injury in rats. Asian Spine J 10(4):611–618

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hosseini M, Yousefifard M, Baikpour M, Rahimi-Movaghar V, Nasirinezhad F, Younesian S, Safari S, Ghelichkhani P, Moghadas Jafari A (2016b) The efficacy of Schwann cell transplantation on motor function recovery after spinal cord injuries in animal models: a systematic review and meta-analysis. J Chem Neuroanat 78:102–111

    Article  CAS  PubMed  Google Scholar 

  23. Hou T, Wu Y, Wang L, Liu Y, Zeng L, Li M, Long Z, Chen H, Li Y, Wang Z (2012) Cellular prostheses fabricated with motor neurons seeded in self-assembling peptide promotes partial functional recovery after spinal cord injury in rats. Tissue Eng A 18(9-10):974–985

    Article  CAS  Google Scholar 

  24. Houweling D, Lankhorst A, Gispen W, Bär P, Joosten E (1998) Collagen containing neurotrophin-3 (NT-3) attracts regrowing injured corticospinal axons in the adult rat spinal cord and promotes partial functional recovery. Exp Neurol 153(1):49–59

    Article  CAS  PubMed  Google Scholar 

  25. Hwang DH, Kim HM, Kang YM, Joo IS, Cho CS, Yoon BW, Kim SU, Kim BG (2011) Combination of multifaceted strategies to maximize the therapeutic benefits of neural stem cell transplantation for spinal cord repair. Cell Transplant 20(9):1361–1379

    Article  PubMed  Google Scholar 

  26. Jiang JP, Liu XY, Zhao F, Zhu X, Li XY, Niu XG, Yao ZT, Dai C, Xu HY, Ma K, Chen XY, Zhang S (2020) Three-dimensional bioprinting collagen/silk fibroin scaffold combined with neural stem cells promotes nerve regeneration after spinal cord injury. Neural Regen Res 15(5):959–968

    Article  PubMed  Google Scholar 

  27. Johnson PJ, Tatara A, McCreedy DA, Shiu A, Sakiyama-Elbert SE (2010) Tissue-engineered fibrin scaffolds containing neural progenitors enhance functional recovery in a subacute model of SCI. Soft Matter 6(20):5127–5137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kabu S, Gao Y, Kwon BK, Labhasetwar V (2015) Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury. J Control Release 219:141–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim H, Zahir T, Tator CH, Shoichet MS (2011) Effects of dibutyryl cyclic-AMP on survival and neuronal differentiation of neural stem/progenitor cells transplanted into spinal cord injured rats. PLoS One 6(6):e21744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kong WJ, Qi ZP, Xia P, Chang YX, Li HR, Qu YP, Pan S, Yang XY (2019) Local delivery of FTY720 and NSCs on electrospun PLGA scaffolds improves functional recovery after spinal cord injury. RSC Adv 9(31):17801–17811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kourgiantaki A, Tzeranis DS, Karali K, Georgelou K, Bampoula E, Psilodimitrakopoulos S, Yannas IV, Stratakis E, Sidiropoulou K, Charalampopoulos I, Gravanis A (2020) Neural stem cell delivery via porous collagen scaffolds promotes neuronal differentiation and locomotion recovery in spinal cord injury. NPJ Regen Med 5:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lai BQ, Wang JM, Duan JJ, Chen YF, Gu HY, Ling EA, Wu JL, Zeng YS (2013) The integration of NSC-derived and host neural networks after rat spinal cord transection. Biomaterials 34(12):2888–2901

    Article  CAS  PubMed  Google Scholar 

  33. Lee BB, Cripps RA, Fitzharris M, Wing PC (2014) The global map for traumatic spinal cord injury epidemiology: update 2011, global incidence rate. Spinal Cord 52(2):110–116

    Article  CAS  PubMed  Google Scholar 

  34. Li X, Xiao Z, Han J, Chen L, Xiao H, Ma F, Hou X, Li X, Sun J, Ding W, Zhao Y, Chen B, Dai J (2013) Promotion of neuronal differentiation of neural progenitor cells by using EGFR antibody functionalized collagen scaffolds for spinal cord injury repair. Biomaterials 34(21):5107–5116

    Article  CAS  PubMed  Google Scholar 

  35. Li G, Che MT, Zhang K, Qin LN, Zhang YT, Chen RQ, Rong LM, Liu S, Ding Y, Shen HY, Long SM, Wu JL, Ling EA, Zeng YS (2016a) Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury. Biomaterials 83:233–248

    Article  CAS  PubMed  Google Scholar 

  36. Li H, Ham TR, Neill N, Farrag M, Mohrman AE, Koenig AM, Leipzig ND (2016b) A hydrogel bridge incorporating immobilized growth factors and neural stem/progenitor cells to treat spinal cord injury. Adv Healthc Mater 5(7):802–812

    Article  CAS  PubMed  Google Scholar 

  37. Li X, Liu S, Zhao Y, Li J, Ding W, Han S, Chen B, Xiao Z, Dai J (2016c) Training neural stem cells on functional collagen scaffolds for severe spinal cord injury repair. Adv Funct Mater 26(32):5835–5847

    Article  CAS  Google Scholar 

  38. Liu J, Gotherstrom C, Forsberg M, Samuelsson EB, Wu J, Calzarossa C, Hovatta O, Sundstrom E, Akesson E (2013) Human neural stem/progenitor cells derived from embryonic stem cells and fetal nervous system present differences in immunogenicity and immunomodulatory potentials in vitro. Stem Cell Res 10(3):325–337

    Article  CAS  PubMed  Google Scholar 

  39. Liu C, Huang Y, Pang M, Yang Y, Li S, Liu L, Shu T, Zhou W, Wang X, Rong L, Liu B (2015) Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (lactide-co-glycolide)/polyethylene glycol scaffolds. PLoS One 10(3):e0117709

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu C, Fan L, Xing J, Wang Q, Lin C, Liu C, Deng X, Ning C, Zhou L, Rong L, Liu B (2019) Inhibition of astrocytic differentiation of transplanted neural stem cells by chondroitin sulfate methacrylate hydrogels for the repair of injured spinal cord. Biomater Sci 7(5):1995–2008

    Article  CAS  PubMed  Google Scholar 

  41. Liu S, Xie YY, Wang LD, Tai CX, Chen D, Mu D, Cui YY, Wang B (2021) A multi-channel collagen scaffold loaded with neural stem cells for the repair of spinal cord injury. Neural Regen Res 16(11):2284–2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Madigan NN, Chen BK, Knight AM, Rooney GE, Sweeney E, Kinnavane L, Yaszemski MJ, Dockery P, O’Brien T, McMahon SS, Windebank AJ (2014) Comparison of cellular architecture, axonal growth, and blood vessel formation through cell-loaded polymer scaffolds in the transected rat spinal cord. Tissue Eng A 20(21-22):2985–2997

    Article  CAS  Google Scholar 

  43. Marchini A, Raspa A, Pugliese R, El Malek MA, Pastori V, Lecchi M, Vescovi AL, Gelain F (2019) Multifunctionalized hydrogels foster hNSC maturation in 3D cultures and neural regeneration in spinal cord injuries. Proc Natl Acad Sci U S A 116(15):7483–7492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Massey JM, Amps J, Viapiano MS, Matthews RT, Wagoner MR, Whitaker CM, Alilain W, Yonkof AL, Khalyfa A, Cooper NGF, Silver J, Onifer SM (2008) Increased chondroitin sulfate proteoglycan expression in denervated brainstem targets following spinal cord injury creates a barrier to axonal regeneration overcome by chondroitinase ABC and neurotrophin-3. Exp Neurol 209(2):426–445

    Article  CAS  PubMed  Google Scholar 

  45. Michel-Monigadon D, Brachet P, Neveu I, Naveilhan P (2011) Immunoregulatory properties of neural stem cells. Immunotherapy 3(4 Suppl):39–41

    Article  CAS  PubMed  Google Scholar 

  46. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. Ann Intern Med 151(4):264–269

    Article  PubMed  Google Scholar 

  47. Mothe AJ, Tam RY, Zahir T, Tator CH, Shoichet MS (2013) Repair of the injured spinal cord by transplantation of neural stem cells in a hyaluronan-based hydrogel. Biomaterials 34(15):3775–3783

    Article  CAS  PubMed  Google Scholar 

  48. Nakhjavan-Shahraki B, Yousefifard M, Rahimi-Movaghar V, Baikpour M, Nasirinezhad F, Safari S, Yaseri M, Moghadas Jafari A, Ghelichkhani P, Tafakhori A, Hosseini M (2018) Transplantation of olfactory ensheathing cells on functional recovery and neuropathic pain after spinal cord injury; systematic review and meta-analysis. Sci Rep 8:325

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nazmi A, Mohamed Arif I, Dutta K, Kundu K, Basu A (2014) Neural stem/progenitor cells induce conversion of encephalitogenic T cells into CD4+-CD25+- FOXP3+ regulatory T cells. Viral Immunol 27(2):48–59

    Article  CAS  PubMed  Google Scholar 

  50. Nomura H, Zahir T, Kim H, Katayama Y, Kulbatski I, Morshead CM, Shoichet MS, Tator CH (2008) Extramedullary chitosan channels promote survival of transplanted neural stem and progenitor cells and create a tissue bridge after complete spinal cord transection. Tissue Eng A 14(5):649–665

    Article  CAS  Google Scholar 

  51. Olson HE, Rooney GE, Gross L, Nesbitt JJ, Galvin KE, Knight A, Chen B, Yaszemski MJ, Windebank AJ (2009) Neural stem cell- and Schwann cell-loaded biodegradable polymer scaffolds support axonal regeneration in the transected spinal cord. Tissue Eng A 15(7):1797–1805

    Article  CAS  Google Scholar 

  52. Pakulska MM, Tator CH, Shoichet MS (2017) Local delivery of chondroitinase ABC with or without stromal cell-derived factor 1α promotes functional repair in the injured rat spinal cord. Biomaterials 134:13–21

    Article  CAS  PubMed  Google Scholar 

  53. Pang M, Shu T, Chen RQ, Liu C, He L, Yang Y, Bardeesi ASA, Lin CK, Zhang LM, Wang X, Liu B, Rong LM (2016) Neural precursor cells generated from induced pluripotent stem cells with gelatin sponge-electrospun PLGA/PEG nanofibers for spinal cord injury repair. Int J Clin Exp Med 9(9):17985–17994

    CAS  Google Scholar 

  54. Qiu XC, Jin H, Zhang RY, Ding Y, Zeng X, Lai BQ, Ling EA, Wu JL, Zeng YS (2015) Donor mesenchymal stem cell-derived neural-like cells transdifferentiate into myelin-forming cells and promote axon regeneration in rat spinal cord transection. Stem Cell Res Ther 6:105

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rahimi-Movagha V, Yousefifard M, Ghelichkhani P, Baikpour M, Tafakhori A, Asady H, Faridaalaee G, Hosseini M, Safari S (2016) Application of ultrasonography and radiography in detection of hemothorax: a systematic review and meta-analysis. Emergency 4(3):116–126

    Google Scholar 

  56. Ribeiro-Samy S, Silva NA, Correlo VM, Fraga JS, Pinto L, Teixeira-Castro A, Leite-Almeida H, Almeida A, Gimble JM, Sousa N, Salgado AJ, Reis RL (2013) Development and characterization of a PHB-HV-based 3D scaffold for a tissue engineering and cell-therapy combinatorial approach for spinal cord injury regeneration. Macromol Biosci 13(11):1576–1592

    Article  CAS  PubMed  Google Scholar 

  57. Ruzicka J, Romanyuk N, Jirakova K, Hejcl A, Janouskova O, Machova LU, Bochin M, Pradny M, Vargova L, Jendelova P (2019) The effect of iPS-derived neural progenitors seeded on laminin-coated pHEMA-MOETACl hydrogel with dual porosity in a rat model of chronic spinal cord injury. Cell Transplant 28(4):400–412

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shin JE, Jung K, Kim M, Hwang K, Lee H, Kim IS, Lee BH, Lee IS, Park KI (2018) Brain and spinal cord injury repair by implantation of human neural progenitor cells seeded onto polymer scaffolds. Exp Mol Med 50(4):39

    Article  PubMed Central  Google Scholar 

  59. Shrestha B, Coykendall K, Li Y, Moon A, Priyadarshani P, Yao L (2014) Repair of injured spinal cord using biomaterial scaffolds and stem cells. Stem Cell Res Ther 5(4):91

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sistrom CL, Mergo PJ (2000) A simple method for obtaining original data from published graphs and plots. AJR Am J Roentgenol 174(5):1241–1244

    Article  CAS  PubMed  Google Scholar 

  61. Tang S, Liao X, Shi B, Qu Y, Huang Z, Lin Q, Guo X, Pei F (2014) The effects of controlled release of neurotrophin-3 from PCLA scaffolds on the survival and neuronal differentiation of transplanted neural stem cells in a rat spinal cord injury model. PLoS One 9(9):e107517

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tavakol S, Aligholi H, Gorji A, Eshaghabadi A, Hoveizi E, Tavakol B, Rezayat SM, Ai J (2014) Thermogel nanofiber induces human endometrial-derived stromal cells to neural differentiation: in vitro and in vivo studies in rat. J Biomed Mater Res A 102(12):4590–4597

    PubMed  Google Scholar 

  63. Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, Langer R, Snyder EY (2002) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci U S A 99(5):3024–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wan JM, Liu LL, Zhang JF, Lu JW, Li Q (2018) Promotion of neuronal regeneration by using self-polymerized dendritic polypeptide scaffold for spinal cord tissue engineering. J Mater Sci Mater Med 29(1):6

    Article  Google Scholar 

  65. Wang D, Liang J, Zhang J, Liu S, Sun W (2014) Mild hypothermia combined with a scaffold of NgR-silenced neural stem cells/Schwann cells to treat spinal cord injury. Neural Regen Res 9(24):2189–2196

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang C, Yue H, Feng Q, Xu B, Bian L, Shi P (2018) Injectable nanoreinforced shape-memory hydrogel system for regenerating spinal cord tissue from traumatic injury. ACS Appl Mater Interfaces 10(35):29299–29307

    Article  CAS  PubMed  Google Scholar 

  67. Wang J, Chu R, Ni N, Nan G (2020) The effect of Matrigel as scaffold material for neural stem cell transplantation for treating spinal cord injury. Sci Rep 10(1):2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wilems TS, Pardieck J, Iyer N, Sakiyama-Elbert SE (2015) Combination therapy of stem cell derived neural progenitors and drug delivery of anti-inhibitory molecules for spinal cord injury. Acta Biomater 28:23–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Winter B, Pattani H, Temple E (2017) Spinal cord injury. Anaest Intens Care M 18(8):404–409

    Article  Google Scholar 

  70. Xia L, Wan H, Hao SY, Li DZ, Chen G, Gao CC, Li JH, Yang F, Wang SG, Liu S (2013) Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord. Chin Med J 126(5):909–917

    PubMed  Google Scholar 

  71. Xu Y, Zhou J, Liu C, Zhang S, Gao F, Guo W, Sun X, Zhang C, Li H, Rao Z, Qiu S, Zhu Q, Liu X, Guo X, Shao Z, Bai Y, Zhang X, Quan D (2021) Understanding the role of tissue-specific decellularized spinal cord matrix hydrogel for neural stem/progenitor cell microenvironment reconstruction and spinal cord injury. Biomaterials 268:120596

    Article  CAS  PubMed  Google Scholar 

  72. Ye JC, Qin Y, Wu YF, Wang P, Tang Y, Huang L, Ma MJ, Zeng YS, Shen HY (2016) Using primate neural stem cells cultured in self-assembling peptide nanofiber scaffolds to repair injured spinal cords in rats. Spinal Cord 54(11):933–941

    Article  PubMed  Google Scholar 

  73. Yousefifard M, Nasirinezhad F, Shardi Manaheji H, Janzadeh A, Hosseini M, Keshavarz M (2016a) Human bone marrow-derived and umbilical cord-derived mesenchymal stem cells for alleviating neuropathic pain in a spinal cord injury model. Stem Cell Res Ther 7:36

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yousefifard M, Rahimi-Movaghar V, Nasirinezhad F, Baikpour M, Safari S, Saadat S, Moghadas Jafari A, Asady H, Razavi Tousi SMT, Hosseini M (2016b) Neural stem/progenitor cell transplantation for spinal cord injury treatment: a systematic review and meta-analysis. Neuroscience 322:377–397

    Article  CAS  PubMed  Google Scholar 

  75. Yuan N, Tian W, Sun L, Yuan R, Tao J, Chen D (2014) Neural stem cell transplantation in a double-layer collagen membrane with unequal pore sizes for spinal cord injury repair. Neural Regen Res 9(10):1014–1019

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zarei-Kheirabadi M, Sadrosadat H, Mohammadshirazi A, Jaberi R, Sorouri F, Khayyatan F, Kiani S (2020) Human embryonic stem cell-derived neural stem cells encapsulated in hyaluronic acid promotes regeneration in a contusion spinal cord injured rat. Int J Biol Macromol 148:1118–1129

    Article  CAS  PubMed  Google Scholar 

  77. Zhang X, Zeng Y, Zhang W, Wang J, Wu J, Li J (2007) Co-transplantation of neural stem cells and NT-3-overexpressing Schwann cells in transected spinal cord. J Neurotrauma 24(12):1863–1877

    Article  PubMed  Google Scholar 

  78. Zhou X, Shi G, Fan B, Cheng X, Zhang X, Wang X, Liu S, Hao Y, Wei Z, Wang L, Feng S (2018) Polycaprolactone electrospun fiber scaffold loaded with iPSCs-NSCs and ASCs as a novel tissue engineering scaffold for the treatment of spinal cord injury. Int J Nanomedicine 13:6265–6277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zou Y, Ma D, Shen H, Zhao Y, Xu B, Fan Y, Sun Z, Chen B, Xue W, Shi Y, Xiao Z, Gu R, Dai J (2020) Aligned collagen scaffold combination with human spinal cord-derived neural stem cells to improve spinal cord injury repair. Biomater Sci 8(18):5145–5156

    Article  CAS  PubMed  Google Scholar 

  80. Zweckberger K, Ahuja CS, Liu Y, Wang J, Fehlings MG (2016) Self-assembling peptides optimize the post-traumatic milieu and synergistically enhance the effects of neural stem cell therapy after cervical spinal cord injury. Acta Biomater 42:77–89

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research has been supported by the Tehran University of Medical Sciences and Health Services and the Iran Ministry of Health and Medical Education (Grant number: 96-04-159-36946).

Author information

Authors and Affiliations

Authors

Contributions

MY, VR, and MH designed the study. MY, SA, SNM, and LH gathered the data. MH analyzed the data. VR, MY, ARV, JSH, and YL interpreted the findings. MY wrote the first draft, and other authors critically revised the manuscript.

Corresponding authors

Correspondence to Vafa Rahimi-Movaghar or Mostafa Hosseini.

Ethics declarations

Ethics approval

The current study was approved by the Tehran University of Medical Sciences and Health Services and the Iran Ministry of Health and Medical Education.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 121 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefifard, M., Askarian-Amiri, S., Nasseri Maleki, S. et al. Combined application of neural stem/progenitor cells and scaffolds on locomotion recovery following spinal cord injury in rodents: a systematic review and meta-analysis. Neurosurg Rev 45, 3469–3488 (2022). https://doi.org/10.1007/s10143-022-01859-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-022-01859-4

Keywords

Navigation