Skip to main content

Advertisement

Log in

Genetic modification strategies for enhancing plant resilience to abiotic stresses in the context of climate change

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

A Correction to this article was published on 16 October 2023

This article has been updated

Abstract

Enhancing the resilience of plants to abiotic stresses, such as drought, salinity, heat, and cold, is crucial for ensuring global food security challenge in the context of climate change. The adverse effects of climate change, characterized by rising temperatures, shifting rainfall patterns, and increased frequency of extreme weather events, pose significant threats to agricultural systems worldwide. Genetic modification strategies offer promising approaches to develop crops with improved abiotic stress tolerance. This review article provides a comprehensive overview of various genetic modification techniques employed to enhance plant resilience. These strategies include the introduction of stress-responsive genes, transcription factors, and regulatory elements to enhance stress signaling pathways. Additionally, the manipulation of hormone signaling pathways, osmoprotectant accumulation, and antioxidant defense mechanisms is discussed. The use of genome editing tools, such as CRISPR-Cas9, for precise modification of target genes related to stress tolerance is also explored. Furthermore, the challenges and future prospects of genetic modification for abiotic stress tolerance are highlighted. Understanding and harnessing the potential of genetic modification strategies can contribute to the development of resilient crop varieties capable of withstanding adverse environmental conditions caused by climate change, thereby ensuring sustainable agricultural productivity and food security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

Not applicable

Change history

References

  • Abobatta WF (2020) Plant responses and tolerance to combined salt and drought stress. Salt and Drought Stress Tolerance in Plants, Signaling Networks and Adaptive Mechanisms, pp 17–52

    Book  Google Scholar 

  • Ahammed GJ, Li X, Yu J (2023) Introduction to plant hormones and climate change. In: Plant Hormones and Climate Change. Springer, pp 1–16

    Chapter  Google Scholar 

  • Ahmad A, Ashraf S, Munawar N, Jamil A, Ghaffar A, Shahbaz M (2021) CRISPR/Cas-mediated abiotic stress tolerance in crops. The Future of Food Security, CRISPR Crops, pp 177–211

    Google Scholar 

  • Ahmad N, Jianyu L, Xu T, Noman M, Jameel A, Na Y, Fawei W (2019) Overexpression of a novel cytochrome P450 promotes flavonoid biosynthesis and osmotic stress tolerance in transgenic Arabidopsis. Genes 10(10):756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F (2012) Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 30:24–540

    Article  Google Scholar 

  • Ahmed FE (2002) Detection of genetically modified organisms in foods. Trends Biotechnol 20(5):215–223

    Article  CAS  PubMed  Google Scholar 

  • Akhtar R, Sultana S, Masud MM, Jafrin N, Al-Mamun A (2021) Consumers’ environmental ethics, willingness, and green consumerism between lower and higher income groups. Res Conserv Recycl 168:105274

  • Al Anouti F (2014) Concerns regarding food biotechnology: an ongoing debate. J Biodiversity, Bioprospecting Dev 1:1000106. https://doi.org/10.4172/2376-0214.1000106

  • Ali N, Datta SK, Datta K (2010) RNA interference in designing transgenic crops. GM Crops 1(4):207–213

    Article  PubMed  Google Scholar 

  • Al-Khayri JM, Rashmi R, Surya Ulhas R, Sudheer WN, Banadka A, Nagella P, Almaghasla MI (2023) The role of nanoparticles in response of plants to abiotic stress at physiological, biochemical, and molecular levels. Plants 12(2):292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amirhusin B (2023) Genetically modified organism status, regulation, approval, labeling, and consumer perception in ASEAN. GMOs and Political Stance. Elsevier, pp 129–150

    Chapter  Google Scholar 

  • Anderson JT, Song BH (2020) Plant adaptation to climate change—Where are we? J Syst Evol 58:533–545

    Article  PubMed  PubMed Central  Google Scholar 

  • Andow DA (2009) Genetically modified plants. Encyclopedia of Insects. Elsevier Inc., pp 406–410

    Chapter  Google Scholar 

  • Andualem B, Seid A (2021) The role of green biotechnology through genetic engineering for climate change mitigation and adaptation, and for food security: current challenges and future perspectives. J Adv Biol Biotechnol 24:1–11

    Google Scholar 

  • Antle J, Capalbo S, Mooney S, Elliott E, Paustian K (2003) Spatial heterogeneity, contract design, and the efficiency of carbon sequestration policies for agriculture. J Environ Econ Manag 46(2):231–250

    Article  Google Scholar 

  • Arpaia S, Christiaens O, Giddings K, Jones H, Mezzetti B, Moronta-Barrios F, . . . Smagghe G (2020) Biosafety of GM crop plants expressing dsRNA: data requirements and EU regulatory considerations. Front Plant Sci 11:940

  • Ashokkumar S, Jaganathan D, Ramanathan V, Rahman H, Palaniswamy R, Kambale R, Muthurajan R (2020) Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing. PLoS One 15(8):e0237018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayanoğlu FB, Elçin AE, Elçin YM (2020) Bioethical issues in genome editing by CRISPR-Cas9 technology. Turk J Biol 44(2):110

    Article  PubMed  PubMed Central  Google Scholar 

  • Azadi H, Samiee A, Mahmoudi H, Jouzi Z, Rafiaani Khachak P, De Maeyer P, Witlox F (2016) Genetically modified crops and small-scale farmers: main opportunities and challenges. Crit Rev Biotechnol 36:434–446

    PubMed  Google Scholar 

  • Bacha SAS, Iqbal B (2023) Advancing agro-ecological sustainability through emerging genetic approaches in crop improvement for plants. Funct Integr Genomics 23:145. https://doi.org/10.1007/s10142-023-01074-4

    Article  CAS  PubMed  Google Scholar 

  • Bakshi A (2003) Potential adverse health effects of genetically modified crops. J Toxicol Environ Health Part B 6:211–225

    Article  CAS  Google Scholar 

  • Balla K, Bencze S, Janda T, Veisz O (2009) Analysis of heat stress tolerance in winter wheat. Acta Agronomica Hungarica 57(4):437–444

    Article  Google Scholar 

  • Bao AK, Wang SM, Wu GQ, Xi JJ, Zhang JL, Wang CM (2009) Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci 176:232–240

    Article  CAS  Google Scholar 

  • Basaran P, Kilic B, Soyyigit H, Sengun H (2004) Public perceptions of GMOs in food in Turkey: a pilot survey. J Food Agric Environ 2(3):25–28

    Google Scholar 

  • Batcho AA, Sarwar MB, Rashid B, Hassan S, Husnain T (2021) Heat shock protein gene identified from Agave sisalana (As HSP70) confers heat stress tolerance in transgenic cotton (Gossypium hirsutum). Theor Exp Plant Physiol 33:141–156

    Article  CAS  Google Scholar 

  • Bawa A, Anilakumar K (2013) Genetically modified foods: safety, risks and public concerns—a review. J Food Sci Technol 50(6):1035–1046

    Article  CAS  PubMed  Google Scholar 

  • Beacham AM, Hand P, Barker GC, Denby KJ, Teakle GR, Walley PG, Monaghan JM (2018) Addressing the threat of climate change to agriculture requires improving crop resilience to short-term abiotic stress. Outlook Agric 47(4):270–276

    Article  Google Scholar 

  • Bhambhani S, Kondhare KR, Giri AP (2021) Diversity in chemical structures and biological properties of plant alkaloids. Molecules. 26:3374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat MA, Mir RA, Kumar V, Shah AA, Zargar SM, Rahman S, Jan AT (2021) Mechanistic insights of CRISPR/Cas-mediated genome editing towards enhancing abiotic stress tolerance in plants. Physiol Plant 172(2):1255–1268

    Article  CAS  PubMed  Google Scholar 

  • Bhattarai S, Harvey JT, Djidonou D, Leskovar DI (2021) Exploring morpho-physiological variation for heat stress tolerance in tomato. Plants 10(2):347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrelli VM, Brambilla V, Rogowsky P, Marocco A, Lanubile A (2018) The enhancement of plant disease resistance using CRISPR/Cas9 technology. Front Plant Sci 9:1245

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouis HE, Chassy BM, Ochanda JO (2003) 2. Genetically modified food crops and their contribution to human nutrition and food quality. Trends Food Sci Technol 14(5-8):191–209

    Article  CAS  Google Scholar 

  • Bressan RA, Bohnert HJ, Hasegawa PM (2008) Genetic engineering for salinity stress tolerance. Adv Plant Biochem Mol Biol 1:347–384

    Article  CAS  Google Scholar 

  • Bruetschy C (2019) The EU regulatory framework on genetically modified organisms (GMOs). Transgenic Res 28:169–174

    Article  CAS  PubMed  Google Scholar 

  • Buhaug H, Gleditsch NP, Theisen OM (2008) Implications of climate change for armed conflict. World Bank, Washington, DC, p 2

    Google Scholar 

  • Butler D, Reichhardt T, Abbott A, Dickson D, Saegusa A (1999) Long-term effect of GM crops serves up food for thought. Nature 398(6729):651–656

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Zhang Z, Huang S, Bai X, Huang Z, Zhang YJ, . . . You S (2021) CannabisGDB: a comprehensive genomic database for Cannabis Sativa L. Plant Biotechnol J 19(5):857

  • Cao M, Narayanan M, Shi X, Chen X, Li Z, Ma Y (2023) Optimistic contributions of plant growth-promoting bacteria for sustainable agriculture and climate stress alleviation. Environ Res 217:114924

    Article  CAS  PubMed  Google Scholar 

  • Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6:507–512

    Article  CAS  PubMed  Google Scholar 

  • Carpenter JE (2011) Impact of GM crops on biodiversity. GM crops 2(1):7–23

    Article  PubMed  Google Scholar 

  • Chakraborty S, Newton AC (2011) Climate change, plant diseases and food security: an overview. Plant Pathology. 60:2–14

    Article  Google Scholar 

  • Chang Y, Nguyen BH, Xie Y, Xiao B, Tang N, Zhu W, Mou T, Xiong L (2017) Co-overexpression of the constitutively active form of OsbZIP46 and ABA-activated protein kinase SAPK6 improves drought and temperature stress resistance in rice. Front Plant Sci 8:1102

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaplin-Kramer R, Kremen C (2012) Pest control experiments show benefits of complexity at landscape and local scales. Ecol Appl 22:1936–1948

    Article  PubMed  Google Scholar 

  • Chaudhry A, Hassan AU, Khan SH et al (2023) The changing landscape of agriculture: role of precision breeding in developing smart crops. Funct Integr Genomics 23:167. https://doi.org/10.1007/s10142-023-01093-1

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Shelton A, Ye G-Y (2011) Insect-resistant genetically modified rice in China: from research to commercialization. Annu Rev Entomol 56:81–101

    Article  CAS  PubMed  Google Scholar 

  • Chilcoat D, Liu Z-B, Sander J (2017) Use of CRISPR/Cas9 for crop improvement in maize and soybean. Prog Mol Biol Transl Sci 149:27–46

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu J-K (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12(10):444–451

    Article  CAS  PubMed  Google Scholar 

  • Choi I-Y, Um T, Chung G (2023) Chapter 7 - Genetically modified organisms in Korea: state of affairs, policy, and regulation. In: Nawaz MA, Chung G, Golokhvast KS, Tsatsakis AM (eds) GMOs and Political Stance. Academic Press, pp 115–127

    Chapter  Google Scholar 

  • Chokheli V, Rajput V, Dmitriev P, Varduny T, Minkina T, Singh RK, Singh A (2021) Status and policies of GM crops in Russia. In: Policy Issues in Genetically Modified Crops. Elsevier, pp 57–74

    Chapter  Google Scholar 

  • Choudhary M, Wani SH, Kumar P et al (2019) QTLian breeding for climate resilience in cereals: progress and prospects. Funct Integr Genomics 19:685–701. https://doi.org/10.1007/s10142-019-00684-1

    Article  CAS  PubMed  Google Scholar 

  • Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kühn R (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33:543–548

    Article  CAS  PubMed  Google Scholar 

  • Clive J (2008) Global status of commercialized Biotech/GM crops: 2008. ISAAA Brief No. 39. ISAAA, Ithaca, NY

  • Cockburn A (2002) Assuring the safety of genetically modified (GM) foods: the importance of an holistic, integrative approach. J Biotechnol 98(1):79–106

    Article  CAS  PubMed  Google Scholar 

  • Conner AJ, Glare TR, Nap JP (2003) The release of genetically modified crops into the environment: part II. Overview of ecological risk assessment. Plant J 33(1):19–46

    Article  PubMed  Google Scholar 

  • Costa-Font M, Gil JM, Traill WB (2008) Consumer acceptance, valuation of and attitudes towards genetically modified food: review and implications for food policy. Food Policy 33(2):99–111

    Article  Google Scholar 

  • Crist E (2013) On the poverty of our nomenclature. Environ Humanit 3(1):129–147

    Article  Google Scholar 

  • Cui K, Shoemaker SP (2018) Public perception of genetically-modified (GM) food: a nationwide Chinese consumer study. npj Sci Food 2(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  • Cummins PL, Kannappan B, Gready JE (2019) Response: commentary: directions for optimization of photosynthetic carbon fixation: Rubisco’s efficiency may not be so constrained after all. Front Plant Sci 10:1426

    Article  PubMed  PubMed Central  Google Scholar 

  • Dale PJ, Clarke B, Fontes EM (2002) Potential for the environmental impact of transgenic crops. Nat Biotechnol 20(6):567–574

    Article  CAS  PubMed  Google Scholar 

  • Datta A (2013) Genetic engineering for improving quality and productivity of crops. Agric Food Secur 2(1):1–3

    Article  Google Scholar 

  • De Santis B, Stockhofe N, Wal J-M, Weesendorp E, Lalles J-P, van Dijk J, . . .,  Onori R (2018) Case studies on genetically modified organisms (GMOs): potential risk scenarios and associated health indicators. Food Chem Toxicol 117:36-65

  • Debbarma J, Sarki YN, Saikia B, Boruah HPD, Singha DL, Chikkaputtaiah C (2019) Ethylene response factor (ERF) family proteins in abiotic stresses and CRISPR–Cas9 genome editing of ERFs for multiple abiotic stress tolerance in crop plants: a review. Mol Biotechnol 61(2):153–172

    Article  CAS  PubMed  Google Scholar 

  • Delaney B, Goodman RE, Ladics GS (2018) Food and feed safety of genetically engineered food crops. Toxicol Sci 162:361–371

    Article  CAS  PubMed  Google Scholar 

  • Deng H, Hu R, Pray C, Jin Y (2019) Perception and attitude toward GM technology among agribusiness managers in China as producers and as consumers. Sustainability 11(5):1342

    Article  Google Scholar 

  • Devos Y, Álvarez-Alfageme F, Gennaro A, Mestdagh S (2016) Assessment of unanticipated unintended effects of genetically modified plants on non-target organisms: a controversy worthy of pursuit? J Appl Entomol 140:1–10

    Article  Google Scholar 

  • Doh JP, Guay TR (2006) Corporate social responsibility, public policy, and NGO activism in Europe and the United States: an institutional-stakeholder perspective. J Manag Stud 43(1):47–73

    Article  Google Scholar 

  • Domingo JL (2016) Safety assessment of GM plants: an updated review of the scientific literature. Food Chem Toxicol 95:12–18

    Article  CAS  PubMed  Google Scholar 

  • Domingo JL, Bordonaba JG (2011) A literature review on the safety assessment of genetically modified plants. Environ Int 37(4):734–742

    Article  PubMed  Google Scholar 

  • Dona A, Arvanitoyannis IS (2009) Health risks of genetically modified foods. Crit Rev Food Sci Nutr 49:164–175

    Article  CAS  PubMed  Google Scholar 

  • Drost D, Long G, Wilson D, Miller B, Campbell W (1996) Barriers to adopting sustainable agricultural practices. J Ext 34(6):1–6

    Google Scholar 

  • Dubey A, Malla MA, Khan F, Chowdhary K, Yadav S, Kumar A, Khan ML (2019) Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers Conserv 28:2405–2429

    Article  Google Scholar 

  • Duchenne-Moutien RA, Neetoo H (2021) Climate change and emerging food safety issues: a review. J Food Prot 84(11):1884–1897

    Article  CAS  PubMed  Google Scholar 

  • Eckerstorfer M, Dolezel M, Greiter A, Miklau M, Heissenberger A, Steinbrecher RA (2020) Risk assessment of plants developed by new genetic modification techniques (nGMs): biosafety considerations for plants developed by genome editing and other new genetic modification techniques (nGMs) and considerations for their regulation: final report of the R&D project (FKZ: 3516 89 0400; lot1)

  • El-Mounadi K, Morales-Floriano ML, Garcia-Ruiz H (2020) Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9. Front Plant Sci 11:56

    Article  PubMed  PubMed Central  Google Scholar 

  • Espinoza Cancino CG, Schlechter R, Herrera D, Torres E, Serrano A, Medina C (2013) Cisgenesis and intragenesis: new tools for improving crops

  • Fand BB, Kamble AL, Kumar M (2012) Will climate change pose serious threat to crop pest management: A critical review. Int J Sci Res Pub 2:1–4

    Google Scholar 

  • Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72:673–689

    Article  CAS  PubMed  Google Scholar 

  • Feng YL, Liu SC, Chen RD, Sun XN, Xiao JJ, Xiang JF, Xie AY (2023) Proximal binding of dCas9 at a DNA double strand break stimulates homology-directed repair as a local inhibitor of classical non-homologous end joining. Nucleic Acids Res 51:2740–2758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferry N, Gatehouse AM (2009) Environmental impact of genetically modified crops: CABI

    Book  Google Scholar 

  • Fesenko E, Edwards R (2014) Plant synthetic biology: a new platform for industrial biotechnology. J Exp Bot 65(8):1927–1937

    Article  CAS  PubMed  Google Scholar 

  • Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O (2015) Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front Plant Sci 6:978

    Article  PubMed  PubMed Central  Google Scholar 

  • Flexas J, Bota J, Galmes J, Medrano H, Ribas-Carbó M (2006) Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiol Plant 127(3):343–352

    Article  CAS  Google Scholar 

  • Flexas J, Niinemets Ü, Gallé A, Barbour MM, Centritto M, Diaz-Espejo A, . . ., Rodriguez PL.(2013) Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynth Res 117:45-59

  • Fontes EM, Pires CS, Sujii ER, Panizzi AR (2002) The environmental effects of genetically modified crops resistant to insects. Neotrop Entomol 31:497–513

    Article  Google Scholar 

  • Frizzi A, Huang S (2010) Tapping RNA silencing pathways for plant biotechnology. Plant Biotechnol J 8(6):655–677

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Zhao Y (2014) Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR mediated genome editing. J Integr Plant Biol 56:343–349

    Article  CAS  PubMed  Google Scholar 

  • Garland S, Curry HA (2022) Turning promise into practice: crop biotechnology for increasing genetic diversity and climate resilience. PLoS Biol 20(7):e3001716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaskell G, Allum N, Wagner W, Kronberger N, Torgersen H, Hampel J, Bardes J (2004) GM foods and the misperception of risk perception. Risk Analysis: An Int J 24:185–194

    Article  Google Scholar 

  • Geraghty R, Capes-Davis A, Davis J, Downward J, Freshney R, Knezevic I, . . .  Stacey G (2014) Guidelines for the use of cell lines in biomedical research. Br J Cancer 111(6):1021-1046

  • Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW (2011) Field-evolved resistance to Bt maize by western corn rootworm. PLoS One 6:e22629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gepts P (2002) A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci 42(6):1780–1790

    Article  Google Scholar 

  • Ghimire B, Sapkota S, Bahri BA, Martinez-Espinoza AD, Buck JW, Mergoum M (2020) Fusarium head blight and rust diseases in soft red winter wheat in the southeast United States: state of the art, challenges and future perspective for breeding. Front Plant Sci 11:1080

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghimire BK, Yu CY, Kim W-R, Moon H-S, Lee J, Kim SH, Chung IM (2023) Assessment of benefits and risk of genetically modified plants and products: current controversies and perspective. Sustainability 15(2):1722

    Article  CAS  Google Scholar 

  • Giddens A (1999) Risk and responsibility. Mod L Rev 62:1

    Article  Google Scholar 

  • Goldstein DA, Tinland B, Gilbertson LA, Staub JM, Bannon GA, Goodman RE, McCoy RL, Silvanovich A (2005) Human safety and genetically modified plants: a review of antibiotic resistance markers and future transformation selection technologies. J Appl Microbiol 99:7–23

    Article  CAS  PubMed  Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv Agron 70:77–142

    Article  Google Scholar 

  • Greef WD, Delon R, Block MD, Leemans J, Botterman J (1989) Evaluation of herbicide resistance in transgenic crops under field conditions. Bio/technology 7(1):61–64

    Google Scholar 

  • Gupta S, Kumar A, Patel R, Kumar V (2021) Genetically modified crop regulations: scope and opportunity using the CRISPR-Cas9 genome editing approach. Mol Biol Rep 48(5):4851–4863

    Article  CAS  PubMed  Google Scholar 

  • Ha CM, Rao X, Saxena G, Dixon RA (2021) Growth–defense trade-offs and yield loss in plants with engineered cell walls. New Phytologist. 231:60–74

    Article  CAS  PubMed  Google Scholar 

  • Hall AJ, Richards RA (2013) Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crop Res 143:18–33

    Article  Google Scholar 

  • Haque E, Taniguchi H, Hassan MM, Bhowmik P, Karim MR, Śmiech M, Zhao K, Rahman M, Islam T (2018) Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: recent progress, prospects, and challenges. Front Plant Sci 9:617

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartwell LH, Hood L, Goldberg ML, Reynolds AE, Silver LM (2011) Genetics: from genes to genomes: McGraw-Hill

    Google Scholar 

  • Hasanuzzaman M, Bhuyan MB, Nahar K, Hossain MS, Mahmud JA, Hossen MS, . . . Fujita M (2018) Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy 8(3):31

  • He JY, Ren YF, Zhu C, Yan YP, Jiang DA (2008) Effect of Cd on growth, photosynthetic gas exchange, and chlorophyll fluorescence of wild and Cd-sensitive mutant rice. Photosynthetica 46:466–470

    Article  CAS  Google Scholar 

  • He R, Zhuang Y, Cai Y, Agüero CB, Liu S, Wu J, Deng S, Walker MA, Lu J, Zhang Y (2018) Overexpression of 9-cis-epoxycarotenoid dioxygenase cisgene in grapevine increases drought tolerance and results in pleiotropic effects. Front Plant Sci 9:970

    Article  PubMed  PubMed Central  Google Scholar 

  • Head G, Tzotzos GT (2023) New genetic modification techniques: challenges and prospects. Present Knowl Food Saf:918–937

  • Henry RJ (2014) Genomics strategies for germplasm characterization and the development of climate resilient crops. Front Plant Sci 5:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández JA (2019) Salinity tolerance in plants: trends and perspectives. Int J Mol Sci 20(10):2408

    Article  PubMed  PubMed Central  Google Scholar 

  • Hightower R, Baden C, Penzes E, Lund P, Dunsmuir P (1991) Expression of antifreeze proteins in transgenic plants. Plant Mol Biol 17:1013–1021

    Article  CAS  PubMed  Google Scholar 

  • Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savouré A, Jaoua S (2005) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci 169:746–752

    Article  CAS  Google Scholar 

  • Hoang TML, Tran TN, Nguyen TKT, Williams B, Wurm P, Bellairs S, Mundree S (2016) Improvement of salinity stress tolerance in rice: challenges and opportunities. Agronomy 6:54

    Article  Google Scholar 

  • Howden SM, Soussana J-F, Tubiello FN, Chhetri N, Dunlop M, Meinke H (2007) Adapting agriculture to climate change. PNAS 104(50):19691–19696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howell EL, Wirz CD, Brossard D, Jamieson KH, Scheufele DA, Winneg KM, Xenos MA (2018) National Academies of Sciences, Engineering, and Medicine report on genetically engineered crops influences public discourse. Politics Life Sci 37(2):250–261

    Article  PubMed  Google Scholar 

  • Høyland-Kroghsbo NM, Muñoz KA, Bassler BL (2018) Temperature, by controlling growth rate, regulates CRISPR-Cas activity in Pseudomonas aeruginosa. MBio 9(6):e02184–e02118

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang K, Huang K (2017) New technology used in GMO safety assessment. Saf Assess Genetically Modified Foods, pp 181–206

  • International Service for the Acquisition of Agri-biotech Applications (ISAAA) (2019) Biotech crops drive socioeconomic development and sustainable environment in the new frontier. ISAAA Brief:55–2019

  • Irwin A (2001) Constructing the scientific citizen: science and democracy in the biosciences. Public Underst Sci 10(1):1–18

    Article  Google Scholar 

  • Jacobsen S-E, Sørensen M, Pedersen SM, Weiner J (2013) Feeding the world: genetically modified crops versus agricultural biodiversity. Agron Sustain Dev 33:651–662

    Article  Google Scholar 

  • Jagtap UB, Gurav RG, Bapat VA (2011) Role of RNA interference in plant improvement. Naturwissenschaften 98:473–492

    Article  CAS  PubMed  Google Scholar 

  • Jankowicz-Cieslak J, Mba C, Till BJ (2017) Mutagenesis for crop breeding and functional genomics. Protocols, Biotechnologies for Plant Mutation Breeding, pp 3–18

    Google Scholar 

  • Jiang GL (2013) Molecular markers and marker-assisted breeding in plants. Plant Breed Laboratories Fields 3:45–83

    Google Scholar 

  • Joy B (2000) Why the future doesn’t need us, vol 8, Wired San Francisco, CA

  • Juroszek P, Von Tiedemann A (2011) Potential strategies and future requirements for plant disease management under a changing climate. Plant Pathol 60:100–112

    Article  Google Scholar 

  • Kamthan A, Chaudhuri A, Kamthan M, Datta A (2016) Genetically modified (GM) crops: milestones and new advances in crop improvement. Theor Appl Genet 129:1639–1655

    Article  CAS  PubMed  Google Scholar 

  • Katiyar-Agarwal S, Agarwal M, Grover A (2003) Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol Biol 51:677–686

    Article  CAS  PubMed  Google Scholar 

  • Kaur N, Alok A, Kaur N, Pandey P, Awasthi P, Tiwari S (2018) CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali Genome Funct Integr Genomics 18:89–99

    Article  CAS  PubMed  Google Scholar 

  • Kavhiza NJ, Zargar M, Prikhodko SI, Pakina EN, Murtazova KM-S, Nakhaev MR (2022) Improving crop productivity and ensuring food security through the adoption of genetically modified crops in sub-Saharan Africa. Agron 12:439

    Article  CAS  Google Scholar 

  • Kawakami EM, Oosterhuis DM, Snider JL (2010) Physiological effects of 1-methylcyclopropene on well-watered and water-stressed cotton plants. J Plant Growth Regul 29:280–288

    Article  CAS  Google Scholar 

  • Kennedy I (1999) Genetically modified crops: the ethical and social issues

  • Key S, Ma JK, Drake PM (2008) Genetically modified plants and human health. J R Soc Med 101(6):290–298

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan NA, Syeed S, Masood A, Nazar R, Iqbal N (2010) Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. Int J Plant Biol 1(1):e1

    Article  Google Scholar 

  • Kim JH, Castroverde CDM, Huang S, Li C, Hilleary R, Seroka A, Wang J (2022) Increasing the resilience of plant immunity to a warming climate. Nature 607(7918):339–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JJ, Park SI, Kim YH, Park HM, Kim YS, Yoon H-S (2020) Overexpression of a proton pumping gene OVP1 enhances salt stress tolerance, root growth and biomass yield by regulating ion balance in rice (Oryza sativa L.). Environ Exp Bot 175:104033

    Article  CAS  Google Scholar 

  • Klümper W, Qaim M (2014) A meta-analysis of the impacts of genetically modified crops. PLoS One 9(11):e111629

    Article  PubMed  PubMed Central  Google Scholar 

  • Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/technology 11:194–200

    CAS  Google Scholar 

  • Koźmińska A, Wiszniewska A, Hanus-Fajerska E, Muszyńska E (2018) Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. Plant Biotechnol Rep 12:1–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Krimsky S (2019) GMOs decoded: a skeptic’s view of genetically modified foods. MIT Press

    Book  Google Scholar 

  • Ku MS, Ranade U, Hsu T, Cho D, Li X, Jiao D, . . . Matsuoka M (2000) Photosynthetic performance of transgenic rice plants overexpressing maize C4 photosynthesis enzymes. In Studies in plant science 7:193–204. Elsevier

  • Kuiper HA, Kleter GA, Noordam MY (2000) Risks of the release of transgenic herbicide-resistant plants with respect to humans, animals, and the environment. Crop Prot 19:773–778

    Article  Google Scholar 

  • Kumar K, Gambhir G, Dass A, Tripathi AK, Singh A, Jha AK, Yadava P, Choudhary M, Rakshit S (2020) Genetically modified crops: current status and future prospects. Planta 251:1–27

    Article  Google Scholar 

  • Kumar M, Prusty MR, Pandey MK, Singh PK, Guo B, Varshney RK (2023) Application of CRISPR-Cas9-mediated gene editing for abiotic stress management in crop plants. Front Plant Sci 14:1157678

  • Kurreck J (2003) Antisense technologies: improvement through novel chemical modifications. Eur J Biochem 270(8):1628–1644

    Article  CAS  PubMed  Google Scholar 

  • Lal S, Gulyani V, Khurana P (2008) Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res 17:651–663

    Article  CAS  PubMed  Google Scholar 

  • Lehmann J, Bossio DA, Kögel-Knabner I, Rillig MC (2020) The concept and future prospects of soil health. Nature Rev Earth Environ 1(10):544–553

    Article  Google Scholar 

  • Lenaerts B, Collard BC, Demont M (2019) Improving global food security through accelerated plant breeding. Plant Sci 287:110207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Yang X, Yu Y, Si X, Zhai X, Zhang H, . . . Xu C (2018) Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol 36(12):1160–1163

  • Li Y, Zhang Y, Feng F, Liang D, Cheng L, Ma F, Shi S (2010) Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M. 26 and its influence on salt tolerance. Plant Cell. Tissue Organ Cult (PCTOC) 102:337–345

    Article  CAS  Google Scholar 

  • Li Z, Hu Q, Zhou M, Vandenbrink J, Li D, Menchyk N, . . . Sun D (2013) Heterologous expression of Os SIZ 1, a rice SUMO E 3 ligase, enhances broad abiotic stress tolerance in transgenic creeping bentgrass. Plant Biotechnol J 11(4):432–445

  • Lin Q, Zong Y, Xue C, Wang S, Jin S, Zhu Z, Wang Y, Anzalone AV, Raguram A, Doman JL, Liu DR (2020) Prime genome editing in rice and wheat. Nat Biotechnol 38:582–585

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Ahmad N, Hong Y, Zhu M, Zaman S, Wang N, Yao N, Liu X (2022b) Molecular characterization of an isoflavone 2′-hydroxylase generevealed positive insights into flavonoid accumulation and abiotic stress tolerance in safflower. Molecules 27:8001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Zhang B (2022) The landscape of genome sequencing and assembling in plants. Funct Integr Genomics 22:1147–1152. https://doi.org/10.1007/s10142-022-00916-x

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang R, Liu J, Lu H, Li H, Wang Y, Ni X, Li J, Guo Y, Ma H, Liao X (2022a) Base editor enables rational genome-scale functional screening for enhanced industrial phenotypes in Corynebacterium glutamicum. Sci Adv 8:eabq2157

  • Liu X, He P, Chen W, Gao J (2019) Improving multi-task deep neural networks via knowledge distillation for natural language understanding. arXiv preprint arXiv:1904.09482

  • Liu Z, Zhang S, Lock TR, Kallenbach RL, Yuan Z (2023) Aridity determines the effects of warming on community stability in Inner Mongolian grassland. Agric Forest Meteorol 329:109274

    Article  Google Scholar 

  • Lombardo L, Coppola G, Zelasco S (2016) New technologies for insect-resistant and herbicide-tolerant plants. Trends Biotechnol 34(1):49–57

    Article  CAS  PubMed  Google Scholar 

  • Lou D, Wang H, Liang G, Yu D (2017) OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci 8:993

    Article  PubMed  PubMed Central  Google Scholar 

  • Louis MES, Hess JJ (2008) Climate change: impacts on and implications for global health. Am J Prev Med 35(5):527–538

    Article  Google Scholar 

  • Lu BR (2008) Transgene escape from GM crops and potential biosafety consequences: an environmental perspective. Collect Biosafety Rev 4:66–141

    Google Scholar 

  • Ma H, Liu C, Li Z, Ran Q, Xie G, Wang B, Fang S, Chu J, Zhang J (2018) ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development. Plant Physiol 178(2):753–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maffioli SI, Zhang Y, Degen D, Carzaniga T, Del Gatto G, Serina S, . . . Candiani G (2017) Antibacterial nucleoside-analog inhibitor of bacterial RNA polymerase. Cell 169(7):1240–1248. e1223

  • Mafongoya P, Gubba A, Moodley V, Chapoto D, Kisten L, Phophi M (2019) Climate change and rapidly evolving pests and diseases in Southern Africa. New Front Nat Resour Manage Africa:41–57

  • Maghari BM, Ardekani AM (2011) Genetically modified foods and social concerns. Avicenna J Med Biotechnol 3:109

    PubMed  PubMed Central  Google Scholar 

  • Mall T, Gupta M, Dhadialla TS, Rodrigo S (2019) Overview of biotechnology-derived herbicide tolerance and insect resistance traits in plant agriculture. Methods Mol Biol 1864:313–342

    Article  CAS  PubMed  Google Scholar 

  • Mallah N, Obeid M, Abou-Sleymane G (2017) Comprehensive matrices for regulatory approvals and genetic characterization of genetically modified organisms. Food Control 80. https://doi.org/10.1016/j.foodcont.2017.03.053

  • Malzahn A, Lowder L, Qi Y (2017) Plant genome editing with TALEN and CRISPR. Cell Biosci 7:1–18

    Article  Google Scholar 

  • Mansoor S, Amin I, Hussain M, Zafar Y, Briddon RW (2006) Engineering novel traits in plants through RNA interference. Trends Plant Sci 11(11):559–565

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Botella JR, Liu Y, Zhu J-K (2019) Gene editing in plants: progress and challenges. Natl Sci Rev 6(3):421–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao Y, Zhang Z, Feng Z, Wei P, Zhang H, Botella JR, Zhu JK (2016) Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis. Plant Biotechnol J 14(2):519–532

    Article  CAS  PubMed  Google Scholar 

  • Marchetti S, Delledonne M, Fogher C, Chiaba C, Chiesa F, Savazzini F, Giordano A (2000) Soybean Kunitz, C-II and PI-IV inhibitor genes confer different levels of insect resistance to tobacco and potato transgenic plants. Theor Appl Genet 101:519–526

    Article  CAS  Google Scholar 

  • Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, . . . Pidcock R (2018) Global warming of 1.5 C. Ipcc Spec Rep Impacts Glob Warming Of 1(5):43–50

    Google Scholar 

  • Mathesius CA, Sauve-Ciencewicki A, Anderson J, Cleveland C, Fleming C, Frierdich GE, . . . Lipscomb EA (2020) Recommendations for assessing human dietary exposure to newly expressed proteins in genetically modified crops. J Reg Sci 8:1–12

  • Matyjaszczyk E (2018) “Biorationals” in integrated pest management strategies. J Plant Dis Prot 125(6):523–527

    Article  Google Scholar 

  • Mayes S, Ho WK, Chai HH, Gao X, Kundy AC, Mateva KI, . . . Licea LC (2019) Bambara groundnut: an exemplar underutilised legume for resilience under climate change. Planta 250:803–820

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Wang JR, Wang GD, Liang XQ, Li XD, Meng QW (2015) An R2R3-MYB gene, LeAN2, positively regulated the thermo-tolerance in transgenic tomato. J Plant Physiol 175:1–8

    Article  CAS  PubMed  Google Scholar 

  • Mishra R, Joshi RK, Zhao K (2018) Genome editing in rice: recent advances, challenges, and future implications. Front Plant Sci 9:1361

    Article  PubMed  PubMed Central  Google Scholar 

  • Molla KA, Sretenovic S, Bansal KC, Qi Y (2021) Precise plant genome editing using base editors and prime editors. Nat Plants 7(9):1166–1187

    Article  CAS  PubMed  Google Scholar 

  • Munaweera T, Jayawardana N, Rajaratnam R, Dissanayake N (2022) Modern plant biotechnology as a strategy in addressing climate change and attaining food security. Agric Food Secur 11:1–28

    Article  Google Scholar 

  • Muringai V, Fan X, Goddard E (2020) Canadian consumer acceptance of gene-edited versus genetically modified potatoes: a choice experiment approach. Canadian J Agric Econ/Revue Canadienne d'agroeconomie 68(1):47–63

    Article  Google Scholar 

  • Mushtaq M, Bhat JA, Mir ZA, Sakina A, Ali S, Singh AK, . . . Bhat R (2018) CRISPR/Cas approach: a new way of looking at plant-abiotic interactions. J Plant Physiol 224:156–162

  • Myskja BK, Myhr AI (2020) Non-safety assessments of genome-edited organisms: should they be included in regulation? Sci Eng Ethics 26(5):2601–2627

    Article  PubMed  PubMed Central  Google Scholar 

  • Nap JP, Metz PL, Escaler M, Conner AJ (2003) The release of genetically modified crops into the environment: part I. Overview of current status and regulations. Plant J 33(1):1–18

    Article  PubMed  Google Scholar 

  • National Academies of Sciences E and Medicine (2016) Chapter 9: Regulation of current and future genetically engineered crops. Genetically Engineered Crops: Experiences and Prospects. The National Academies Press. https://doi.org/10.17226/23395

  • Nawaz K, Hussain K, Majeed A, Khan F, Afghan S, Ali K (2010) Fatality of salt stress to plants: morphological, physiological and biochemical aspects. Afr J Biotechnol 9:5475–5480

    CAS  Google Scholar 

  • Novak F, Brunner H (1992) Plant breeding: Induced mutation technology for crop improvement. IAEA Bull 4:25–33

    Google Scholar 

  • Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, . . . Usman M (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30(1):1–16

    Article  CAS  Google Scholar 

  • Olesen JE, Bindi M (2002) Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron 16(4):239–262

    Article  Google Scholar 

  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53(4):674–690

    Article  CAS  PubMed  Google Scholar 

  • Otsuka Y (2003) 9. Socioeconomic considerations relevant to the sustainable development, use and control of genetically modified foods. Trends Food Sci Technol 14:294–318

    Article  CAS  Google Scholar 

  • Pallis SJ (2021) Effects of a novel DsRNA-based insecticide on the Colorado potato beetle. The University of Maine

    Google Scholar 

  • Paris B, Vandorou F, Balafoutis AT, Vaiopoulos K, Kyriakarakos G, Manolakos D, Papadakis G (2022) Energy use in open-field agriculture in the EU: a critical review recommending energy efficiency measures and renewable energy sources adoption. Renew Sust Energ Rev 158:112098

    Article  Google Scholar 

  • Park J-J, Dempewolf E, Zhang W, Wang Z-Y (2017) RNA-guided transcriptional activation via CRISPR/dCas9 mimics overexpression phenotypes in Arabidopsis. PLoS One 12(6):e0179410

    Article  PubMed  PubMed Central  Google Scholar 

  • Parmar N, Singh KH, Sharma D, Singh L, Kumar P, Nanjundan J, . . . Thakur AK (2017) Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review 3. Biotech 7:1–35

  • Patz JA, Graczyk TK, Geller N, Vittor AY (2000) Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30(12-13):1395–1405

    Article  CAS  PubMed  Google Scholar 

  • Peace N (2020) Impact of climate change on insects, pest, diseases and animal biodiversity. Int J Enviro Sci Nat Resour 23(5):151–153

    Google Scholar 

  • Pechlaner G, Otero G (2008) The third food regime: neoliberal globalism and agricultural biotechnology in North America. Sociol Rural 48:351–371

    Article  Google Scholar 

  • Pellegrino E, Bedini S, Nuti M, Ercoli L (2018) Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data. Sci Rep 8:3113

    Article  PubMed  PubMed Central  Google Scholar 

  • Phipps RH, Park J (2002) Environmental benefits of genetically modified crops: global and European perspectives on their ability to reduce pesticide use. J Anim Feed Sci 11:1–18

    Article  Google Scholar 

  • Potrykus I (1991) Gene transfer to plants: assessment of published approaches and results. Annu Rev Plant Biol 42(1):205–225

    Article  CAS  Google Scholar 

  • Pretty J, Ball A, Xiaoyun L, Ravindranath N (2002) The role of sustainable agriculture and renewable–resource management in reducing greenhouse–gas emissions and increasing sinks in China and India. Philos Trans R Soc London, Ser A 360(1797):1741–1761

    Article  CAS  Google Scholar 

  • Pyzocha NK, Chen S (2018) Diverse class 2 CRISPR-Cas effector proteins for genome engineering applications. ACS Chem Biol 13:347–356

    Article  CAS  PubMed  Google Scholar 

  • Ramadan A, Alnufaei AA, Fiaz S et al (2023) Effect of salinity on ccmfn gene RNA editing of mitochondria in wild barley and uncommon types of RNA editing. Funct Integr Genomics 23:50. https://doi.org/10.1007/s10142-023-00978-5

    Article  CAS  PubMed  Google Scholar 

  • Raman R (2017) The impact of genetically modified (GM) crops in modern agriculture: a review. GM crops & food 8(4):195–208

    Article  Google Scholar 

  • Rani SJ, Usha R (2013) Transgenic plants: types, benefits, public concerns and future. J Pharm Res 6(8):879–883

    Google Scholar 

  • Reddy PP (2013) Impact of climate change on insect pests, pathogens and nematodes. Pest Manage Horticult Ecosyst 19(2):225–233

    Google Scholar 

  • Ribaut J-M, Hoisington D (1998) Marker-assisted selection: new tools and strategies. Trends Plant Sci 3(6):236–239

    Article  Google Scholar 

  • Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171(2):470–480 e478

    Article  PubMed  Google Scholar 

  • Rommens CM, Haring MA, Swords K, Davies HV, Belknap WR (2007) The intragenic approach as a new extension to traditional plant breeding. Trends Plant Sci 12(9):397–403

    Article  CAS  PubMed  Google Scholar 

  • Romo CM, Tylianakis JM (2013) Elevated temperature and drought interact to reduce parasitoid effectiveness in suppressing hosts. PloS one 8:e58136

  • Roos J, Hopkins R, Kvarnheden A, Dixelius C (2011) The impact of global warming on plant diseases and insect vectors in Sweden. Eur J Plant Pathol 129:9–19

    Article  Google Scholar 

  • Saeed F, Chaudhry UK, Raza A et al (2023) Developing future heat-resilient vegetable crops. Funct Integr Genomics 23:47. https://doi.org/10.1007/s10142-023-00967-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu PK, Sao R, Mondal S, Vishwakarma G, Gupta SK, Kumar V, . . . Das BK (2020) Next generation sequencing based forward genetic approaches for identification and mapping of causal mutations in crop plants: a comprehensive review. Plants 9(10):1355

  • Sainger M, Sainger PA, Chaudhary D, Jaiwal R, Singh RP, Dhankher OP, Jaiwal PK (2015) GM crops for developing world in the era of climate change: for increase of farmer’s income, poverty alleviation, nutrition and health. Genet Manipulation Plants Mitig Clim Chang, pp 223–241

  • Šamajová O, Plíhal O, Al-Yousif M, Hirt H, Šamaj J (2013) Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotechnol Adv 31(1):118–128

    Article  PubMed  Google Scholar 

  • Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9:283–300

    Article  CAS  PubMed  Google Scholar 

  • Sanders RA, Hiatt W (2005) Tomato transgene structure and silencing. Nat Biotechnol 23(3):287–289

    Article  CAS  PubMed  Google Scholar 

  • Santosh Kumar V, Verma RK, Yadav SK, Yadav P, Watts A, Rao M, Chinnusamy V (2020) CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiol Mol Biol Plants 26:1099–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheelbeek PF, Bird FA, Tuomisto HL, Green R, Harris FB, Joy EJ, . . . Dangour AD (2018) Effect of environmental changes on vegetable and legume yields and nutritional quality. Proc Natl Acad Sci 115(26):6804–6809

  • Schmidhuber J, Tubiello FN (2007) Global food security under climate change. Proc Natl Acad Sci 104(50):19703–19708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants: international regulations for genetically modified organisms should be altered to exempt cisgenesis. EMBO Rep 7:750–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedeek KE, Mahas A, Mahfouz M (2019) Plant genome engineering for targeted improvement of crop traits. Front Plant Sci 10:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Sendhil R, Nyika J, Yadav S, Mackolil J, Workie E, Ragupathy R, Ramasundaram P (2022) Genetically modified foods: bibliometric analysis on consumer perception and preference. GM Crops Food 13(1):65

    Article  Google Scholar 

  • Séralini G-E, Mesnage R, Clair E, Gress S, De Vendômois JS, Cellier D (2011) Genetically modified crops safety assessments: present limits and possible improvements. Environ Sci Eur 23(1):1–10

    Article  Google Scholar 

  • Shah SH, Ali S, Hussain Z, Jan SA, Ali GM (2016) Genetic improvement of tomato (Solanum lycopersicum) with AtDREB1A gene for cold stress tolerance using optimized Agrobacterium-mediated transformation system. Int J Agric Biol 18:471–482

    Article  CAS  Google Scholar 

  • Shakoor U, Saboor A, Ali I, Mohsin A (2011) Impact of climate change on agriculture: empirical evidence from arid region. Pak J Agric Sci 48(4):327–333

    Google Scholar 

  • Shen C, Que Z, Xia Y, Tang N, Li D, He R, Cao M (2017) Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. J Plant Biol 60:539–547

    Article  CAS  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS 8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, O'Brien JE, Fard A, Mannion JD, Wang D, Zalewski A (1996) Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries. Circulation 94(7):1655–1664

    Article  CAS  PubMed  Google Scholar 

  • Shiferaw B, Smale M, Braun H-J, Duveiller E, Reynolds M, Muricho G (2013) Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur 5:291–317

    Article  Google Scholar 

  • Shreni Agrawal ER (2022) A review: Agrobacterium-mediated gene transformation to increase plant productivity. J Phytopharm 11:111–117

    Article  Google Scholar 

  • Shrestha S (2019) Effects of climate change in agricultural insect pest. Acta Sci Agric 3(12):74–80

    Article  Google Scholar 

  • Shukla D, Trivedi PK, Nath P, Tuteja N (2016) Metallothioneins and phytochelatins: role and perspectives in heavy metal (loid) s stress tolerance in crop plants. Abiotic Stress response in plants 29:237–264

    Article  Google Scholar 

  • Sim J-E, Oh S-D, Kang K, Shin Y-M, Yun D-W, Baek S-H, . . .  Kim J-K (2023) Metabolite profiling to evaluate metabolic changes in genetically modified protopanaxadiol-enriched rice. Plants 12(4):758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Singh G (2017) Traditional agriculture: a climate-smart approach for sustainable food production. Energy, Ecol Environ 2:296–316

    Article  Google Scholar 

  • Singh S, Chopperla R, Shingote P, Chhapekar SS, Deshmukh R, Khan S, Solanke AU (2021) Overexpression of EcDREB2A transcription factor from finger millet in tobacco enhances tolerance to heat stress through ROS scavenging. J Biotechnol 336:10–24

    Article  CAS  PubMed  Google Scholar 

  • Skendžić S, Zovko M, Živković IP, Lešić V, Lemić D (2021) The impact of climate change on agricultural insect pests. Insects 12(5):440

    Article  PubMed  PubMed Central  Google Scholar 

  • Sleenhoff S, Osseweijer P (2013) Consumer choice: linking consumer intentions to actual purchase of GM labeled food products. GM Crops Food 4:166–171

    Article  PubMed  Google Scholar 

  • Smit B, Burton I, Klein RJ (2000) An anatomy of adaptation to climate change and variability. Springer

    Book  Google Scholar 

  • Snow AA, Andow DA, Gepts P, Hallerman EM, Power A, Tiedje JM, Wolfenbarger L (2005) Genetically engineered organisms and the environment: current status and recommendations 1. Ecol Appl 15(2):377–404

    Article  Google Scholar 

  • Snow AA, Palma PM (1997) Commercialization of transgenic plants: potential ecological risks. BioScience 47(2):86–96

    Article  Google Scholar 

  • Strobbe S, Wesana J, Van Der Straeten D, De Steur H (2023) Public acceptance and stakeholder views of gene edited foods: a global overview. Trends Biotechnol 41:736–740

    Article  CAS  PubMed  Google Scholar 

  • Su T, Liu F, Gu P, Jin H, Chang Y, Wang Q, Liang Q, Qi Q (2016) A CRISPR-Cas9 assisted non-homologous end-joining strategy for one-step engineering of bacterial genome. Sci Rep 6:37895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sufyan M, Daraz U, Hyder S et al (2023) An overview of genome engineering in plants, including its scope, technologies, progress and grand challenges. Funct Integr Genomics 23:119. https://doi.org/10.1007/s10142-023-01036-w

    Article  CAS  PubMed  Google Scholar 

  • Suldovsky B, Akin H (2023) The role of trust in communicating scientific consensus and the environmental benefits of genetically engineered crops: experimental evidence of a backfire effect. Environ Commun 17:101–118

    Article  Google Scholar 

  • Sun Y, Alseekh S, Fernie AR (2023) Plant secondary metabolic responses to global climate change: a metaanalysis in medicinal and aromatic plants. Glob Chang Biol 29:477–504

    Article  CAS  PubMed  Google Scholar 

  • Sundström JF, Albihn A, Boqvist S, Ljungvall K, Marstorp H, Martiin C, . . . Magnusson U (2014) Future threats to agricultural food production posed by environmental degradation, climate change, and animal and plant diseases–a risk analysis in three economic and climate settings. Food Secur 6:201–215

  • Sustek-Sánchez F, Rognli OA, Rostoks N, Sõmera M, Jaškūnė K, Kovi MR, Statkevičiūtė G, Sarmiento C (2023) Improving abiotic stress tolerance of forage grasses–prospects of using genome editing. Frontiers in Plant Science 14:1127532

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203(1):32–43

    Article  PubMed  Google Scholar 

  • Tang G, Galili G (2004) Using RNAi to improve plant nutritional value: from mechanism to application. Trends Biotechnol 22(9):463–469

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Collins H, Metz T, Earle E, Zhao J, Roush R, Shelton A (2001) Greenhouse tests on resistance management of Bt transgenic plants using refuge strategies. J Econ Entomol 94(1):240–247

    Article  CAS  PubMed  Google Scholar 

  • Thole V, Alves SC, Worland B, Bevan MW, Vain P (2009) A protocol for efficiently retrieving and characterizing flanking sequence tags (FSTs) in Brachypodium distachyon T-DNA insertional mutants. Nat Protoc 4(5):650–661

    Article  CAS  PubMed  Google Scholar 

  • Thompson PB (1997) Food biotechnology’s challenge to cultural integrity and individual consent. Hastings Cent Rep 27:34–39

    Article  CAS  PubMed  Google Scholar 

  • Tiedje JM, Colwell RK, Grossman YL, Hodson RE, Lenski RE, Mack RN, Regal PJ (1989) The planned introduction of genetically engineered organisms: ecological considerations and recommendations. Ecology 70:298–315

    Article  Google Scholar 

  • Tien Lea D, Duc Chua H, Quynh Lea N (2016) Improving nutritional quality of plant proteins through genetic engineering. Curr Genomics 17(3):220–229

    Article  Google Scholar 

  • Tsagaye D (2021) Application of genetic fingerprint/recombinant DNA technology in plant breeding: a review. 7:10. https://doi.org/10.14662/ARJASR2019.019

  • Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17(2):147–154

    Article  CAS  PubMed  Google Scholar 

  • Uchida M, Li XW, Mertens P, Alpar HO (2009) Transfection by particle bombardment: delivery of plasmid DNA into mammalian cells using gene gun. Biochim Biophys Acta Gen Subj 1790(8):754–764

    Article  CAS  Google Scholar 

  • Usak M, Erdogan M, Prokop P, Ozel M (2009) High school and university students’ knowledge and attitudes regarding biotechnology: a Turkish experience. Biochem Mol Biol Educ 37(2):123–130

    Article  CAS  PubMed  Google Scholar 

  • Uzogara SG (2000) The impact of genetic modification of human foods in the 21st century: a review. Biotechnol Adv 18(3):179–206

    Article  CAS  PubMed  Google Scholar 

  • Vain P, Thole V (2009) Gene insertion patterns and sites. Methods Mol Biol (Clifton, N.J.) 478:203–226. https://doi.org/10.1007/978-1-59745-379-0_13

    Article  CAS  Google Scholar 

  • Van Esse HP, Reuber TL, van der Does D (2020) Genetic modification to improve disease resistance in crops. New Phytol 225(1):70–86

    Article  PubMed  Google Scholar 

  • Vats S (2015) Herbicides: history, classification and genetic manipulation of plants for herbicide resistance. Sustain Agric Rev 15:153–192

    Article  Google Scholar 

  • Vaughn T, Cavato T, Brar G, Coombe T, DeGooyer T, Ford S, Groth M, Howe A, Johnson S, Kolacz K, Pilcher C (2005) A method of controlling corn rootworm feeding using a Bacillus thuringiensis protein expressed in transgenic maize. Crop Sci 45:931–938

    Article  CAS  Google Scholar 

  • Veress M, Zentai Z, Péntek K, Mitre Z, Deák G, Samu S (2013) Flow dynamics and shape of rinnenkarren systems. Geomorphology 198:115–127

    Article  Google Scholar 

  • Verma C, Nanda S, Singh RK, Singh RB, Mishra S (2011) A review on impacts of genetically modified food on human health. The Open Nutraceuticals J 4:3–11

    Article  Google Scholar 

  • Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64:327–350

    Article  CAS  PubMed  Google Scholar 

  • Vu TV, Das S, Tran MT, Hong JC, Kim JY (2020) Precision genome engineering for the breeding of tomatoes: recent progress and future perspectives. Front Genome Editing 2:612137

    Article  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223

    Article  Google Scholar 

  • Waldvogel AM, Feldmeyer B, Rolshausen G, Exposito-Alonso M, Rellstab C, Kofler R, . . . Bataillon T (2020) Evolutionary genomics can improve prediction of species’ responses to climate change. Evol Lett 4(1):4–18

  • Walters R (2004) Criminology and genetically modified food. Br J Criminol 44(2):151–167

    Article  Google Scholar 

  • Walther G-R, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I, . . . Bugmann H (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24(12):686–693

  • Wang B, Zhong Z, Wang X, Han X, Yu D, Wang C, . . . Zhang Y (2020) Knockout of the OsNAC006 transcription factor causes drought and heat sensitivity in rice. Int J Mol Sci 21(7):2288

  • Wang L, Chen L, Li R, Zhao R, Yang M, Sheng J, Shen L (2017) Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J Agric Food Chem 65(39):8674–8682

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14(4):7370–7390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Li Z, Ahmad N, Sheng X, Iqbal B, Naeem M, . . . Liu X (2023) Unraveling the functional characterization of a jasmonate-induced flavonoid biosynthetic CYP45082G24 gene in Carthamus tinctorius. Funct Integr Genomics 23(2):172

  • Wang Z, Yang C, Chen H, Wang P, Wang P, Song C, Zhang X, Wang D (2018) Multi-gene co-expression can improve comprehensive resistance to multiple abiotic stresses in Brassica napus L. Plant Sci 274:410–419

    Article  CAS  PubMed  Google Scholar 

  • Wei P, Wang L, Liu A, Yu B, Lam H-M (2016) GmCLC1 confers enhanced salt tolerance through regulating chloride accumulation in soybean. Front Plant Sci 7:1082

    Article  PubMed  PubMed Central  Google Scholar 

  • Wheeler T, Von Braun J (2013) Climate change impacts on global food security. Science 341(6145):508–513

    Article  CAS  PubMed  Google Scholar 

  • Wijewardene I, Mishra N, Sun L, Smith J, Zhu X, Payton P, Shen G, Zhang H (2020) Improving drought-, salinity-, and heat-tolerance in transgenic plants by co-overexpressing Arabidopsis vacuolar pyrophosphatase gene AVP1 and Larrea Rubisco activase gene RCA. Plant Sci 296:110499

    Article  CAS  PubMed  Google Scholar 

  • Wong AY-T, Chan AW-K (2016) Genetically modified foods in China and the United States: a primer of regulation and intellectual property protection. Food Sci Human Wellness 5(3):124–140

    Article  Google Scholar 

  • Xiong Y, Zeng H, Zhang Y, Xu D, Qiu D (2013) Silencing the HaHR3 gene by transgenic plant-mediated RNAi to disrupt Helicoverpa armigera development. Int J Biol Sci 9(4):370–381

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu R, Yang Y, Qin R, Li H, Qiu C, Li L, . . . Yang J (2016) Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. J Genet Genomics= Yi chuan xue bao 43(8):529–532

  • Yan L, Kerr PS (2002) Genetically engineered crops: their potential use for improvement of human nutrition. Nutr Rev 60:135–141

    Article  PubMed  Google Scholar 

  • Yang J, Yu S, Shi G, Yan L, Lv R, Ma Z, Wang L (2022) Comparative analysis of R2R3-MYB transcription factors in the flower of Iris laevigata identifies a novel gene regulating tobacco cold tolerance. Plant Biol 24(6):1066–1075

    Article  PubMed  Google Scholar 

  • Yarra R, Kirti P (2019) Expressing class I wheat NHX (TaNHX2) gene in eggplant (Solanum melongena L.) improves plant performance under saline condition. Funct Integr Genomics 19:541–554

    Article  CAS  PubMed  Google Scholar 

  • Yarra R, Sahoo L (2021) Base editing in rice: current progress, advances, limitations, and future perspectives. Plant Cell Rep 40:595–604

    Article  CAS  PubMed  Google Scholar 

  • Zandalinas SI, Fritschi FB, Mittler R (2021) Global warming, climate change, and environmental pollution: recipe for a multifactorial stress combination disaster. Trends Plant Sci 26(6):588–599

    Article  CAS  PubMed  Google Scholar 

  • Zetterberg C, Edvardsson Björnberg K (2017) Time for a new EU regulatory framework for GM crops? J Agric Environ Ethics 30:325–347

    Article  Google Scholar 

  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci 98:12832–12836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Zhu H (2023) Anthocyanins in plant food: current status, genetic modification, and future perspectives. Molecules 28(2):866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Jiao Z, Liu L, Wang K, Zhong D, Li S, Cui X (2018) Enhancer-promoter interaction of SELF PRUNING 5G shapes photoperiod adaptation. Plant Physiol 178(4):1631–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao M, Lin Y, Chen H (2020) Improving nutritional quality of rice for human health. Theor Appl Genet 133:1397–1413

    Article  PubMed  Google Scholar 

  • Zhou S, Hu T, Zhu R, Huang J, Shen L (2021) A novel irrigation canal scheduling approach without relying on a prespecified canal water demand process. J Clean Prod 282:124253

    Article  Google Scholar 

  • Zhu B, Ye C, Lü H, Chen X, Chai G, Chen J, Wang C (2006) Identification and characterization of a novel heat shock transcription factor gene, GmHsfA1, in soybeans (Glycine max). J Plant Res 119:247–256

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Piao S, Myneni RB, Huang M, Zeng Z, Canadell JG, . . . Arneth A (2016) Greening of the Earth and its drivers. Nat Clim Chang 6(8):791–795

  • Zuker A, Tzfira T, Scovel G, Ovadis M, Shklarman E, Itzhaki H, Vainstein A (2001) RolC-transgenic carnation with improved horticultural traits: quantitative and qualitative analyses of greenhouse-grown plants. J Am Soc Hortic Sci 126(1):13–18

    Article  CAS  Google Scholar 

  • Zulfiqar F (2021) Effect of seed priming on horticultural crops. Sci Hortic 286:110197

    Article  CAS  Google Scholar 

  • Zulfiqar F, Ashraf M (2022) Antioxidants as modulators of arsenic-induced oxidative stress tolerance in plants: an overview. J Hazard Mater 427:127891

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Deanship of Scientific Research at King Khalid University for supporting this work under the grant number (R.G.P.2/345/44).

Author information

Authors and Affiliations

Authors

Contributions

Amman Khokhar, Muhammad Shahbaz, Muhammad Faisal Maqsood, and Usman Zulfiqar conceived the idea and planned the work. Nargis Naz, Usama Zafar Iqbal, and Maheen Sara collected the data. Muhammad Aqeel, Noreen Khalid, and Ali Noman assisted in table and figure presentation. Faisal Zulfiqar, Khalid M. Al Syaad, and Manal Abdullah AlShaqhaa edited the draft. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Muhammad Shahbaz or Usman Zulfiqar.

Ethics declarations

Ethics approval

The authors declare that all the permissions or licenses were obtained to collect the data and that all study complies with relevant institutional, national, and international guidelines and legislation for research ethics.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The original version of this article contains an error in affiliation 9. This should be updated to: “Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia”. Affiliation 10 has been removed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KhokharVoytas, A., Shahbaz, M., Maqsood, M.F. et al. Genetic modification strategies for enhancing plant resilience to abiotic stresses in the context of climate change. Funct Integr Genomics 23, 283 (2023). https://doi.org/10.1007/s10142-023-01202-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-023-01202-0

Keywords

Navigation