Skip to main content

Advertisement

Log in

Pan-cancer evidence of prognosis, immune infiltration, and immunotherapy efficacy for annexin family using multi-omics data

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The annexin superfamily (ANXA) is made up of 12 calcium (Ca2+) and phospholipid binding protein members that have a high structural homology and play a key function in cancer cells. However, little research has been done on the annexin family’s function in pan-cancer. We examined the ANXA family’s expression in various tumors through public databases using bioinformatics analysis, assessed the differences in ANXA expression between tumor and normal tissues in pan-cancer, and then investigated the relationship between ANXA expression and patient survival, prognosis, and clinicopathologic traits. Additionally, we investigated the relationships among TCGA cancers’ mutations, tumor mutation burden (TMB), microsatellite instability (MSI), immunological subtypes, immune infiltration, tumor microenvironment, immune checkpoint genes, chemotherapeutics sensitivity, and ANXAs expression. cBioPortal was also used to uncover pan-cancer genomic anomalies in the ANXA family, study relationships between pan-cancer ANXA mRNA expression and copy number or somatic mutations, and assess the prognostic values of these variations. Moreover, we investigated the relationship between ANXAs expression and effectiveness of immunotherapy in multiple cohorts, including one melanoma (GSE78220), one renal cell carcinoma (GSE67501), and three bladder cancer cohorts (GSE111636, IMvigor210 and our own sequencing dataset (TRUCE-01)), and further analyzed the changes of ANXAs expression before and after treatment (tislelizumab combined with nab-paclitaxel) of bladder cancer. Then, we explored the biological function and potential signaling pathway of ANXAs using gene set enrichment analysis (GSEA), and first conducted immune infiltration analysis with ANXAs family genes expression, copy number, or somatic mutations of bladder cancer by TIMER 2.0. Most cancer types and surrounding normal tissues expressed ANXA differently. ANXA expression was linked to patient survival, prognosis, clinicopathologic features, mutations, TMB, MSI, immunological subtypes, tumor microenvironment, immune cell infiltration, and immune checkpoint gene expression in 33 TCGA cancers, with ANXA family members varied. The anticancer drug sensitivity analysis showed that ANXAs family members were significantly related to a variety of drug sensitivities. In addition, we also discovered that the expression level of ANXA1/2/3/4/5/7/9/10 was positively or negatively correlated with objective responses to anti-PD-1/PD-L1 across multiple immunotherapy cohorts. The immune infiltration analysis of bladder cancer further showed the significant relationships between ANXAs copy number variations or mutation status, and infiltration level of different immune cells. Overall, our analyses confirm the importance of ANXAs expression or genomic alterations in prognosis and immunological features of various cancer and identified ANXA-associated genes that may serve as potential therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding authors.

References

  • Andre F, Mardis E, Salm M, Soria JC, Siu LL, Swanton C (2014) Prioritizing targets for precision cancer medicine. Ann Oncol 25:2295–2303

    CAS  PubMed  Google Scholar 

  • Arai Y, Honda S, Haruta M, Kasai F, Fujiwara Y, Ohshima J, Sasaki F, Nakagawara A, Horie H, Yamaoka H, Hiyama E, Kaneko Y (2010) Genome-wide analysis of allelic imbalances reveals 4q deletions as a poor prognostic factor and MDM4 amplification at 1q32.1 in hepatoblastoma. Genes Chromosomes Cancer 49:596–609

    CAS  PubMed  Google Scholar 

  • Bai KH, He SY, Shu LL, Wang WD, Lin SY, Zhang QY, Li L, Cheng L, Dai YJ (2020) Identification of cancer stem cell characteristics in liver hepatocellular carcinoma by WGCNA analysis of transcriptome stemness index. Cancer Med 9:4290–4298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casale TB, Stokes JR (2014) Immunotherapy: what lies beyond. J Allergy Clin Immunol 133:612–619 (quiz 620)

    CAS  PubMed  Google Scholar 

  • Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404

    PubMed  Google Scholar 

  • Chen W, Sun Z, Lu L (2021) Targeted engineering of medicinal chemistry for cancer therapy: recent advances and perspectives. Angew Chem Int Ed Engl 60:5626–5643

    CAS  PubMed  Google Scholar 

  • Chowdhury FN, Reisinger J, Gomez KE, Chimed TS, Thomas CM, Le PN, Miller B, Morton JJ, Nieto CM, Somerset HL, Wang XJ, Keysar SB, Jimeno A (2019) Leading edge or tumor core: intratumor cancer stem cell niches in oral cavity squamous cell carcinoma and their association with stem cell function. Oral Oncol 98:118–124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz IN, Coley HM, Kramer HB, Madhuri TK, Safuwan NA, Angelino AR, Yang M (2017) Proteomics analysis of ovarian cancer cell lines and tissues reveals drug resistance-associated proteins. Cancer Genomics Proteomics 14:35–51

    CAS  PubMed  Google Scholar 

  • Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:pl1

    PubMed  PubMed Central  Google Scholar 

  • Gao B, Wang Y, Lu S (2022) Construction and validation of a novel signature based on epithelial-mesenchymal transition-related genes to predict prognosis and immunotherapy response in hepatocellular carcinoma by comprehensive analysis of the tumor microenvironment. Funct Integr Genomics 23:6

    PubMed  PubMed Central  Google Scholar 

  • Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN, Zhu J, Haussler D (2020) Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol 38:675–678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han PF, Che XD, Li HZ, Gao YY, Wei XC, Li PC (2020) Annexin A1 involved in the regulation of inflammation and cell signaling pathways. Chin J Traumatol 23:96–101

    CAS  PubMed  PubMed Central  Google Scholar 

  • He M, Chen Y, Tao C, Tian Q, An L, Lin J, Tian Q, Yang H, Yang S (2019) Mn-porphyrin-based metal-organic framework with high longitudinal relaxivity for magnetic resonance imaging guidance and oxygen self-supplementing photodynamic therapy. ACS Appl Mater Interfaces 11:41946–41956

    CAS  PubMed  Google Scholar 

  • Joyce JA (2005) Therapeutic targeting of the tumor microenvironment. Cancer Cell 7:513–520

    CAS  PubMed  Google Scholar 

  • Karim MA, Samad A, Adhikari UK, Kader MA, Kabir MM, Islam MA, Hasan MN (2020) A multi-omics analysis of bone morphogenetic protein 5 (BMP5) mRNA expression and clinical prognostic outcomes in different cancers using bioinformatics approaches. Biomedicines 8:19

  • Kim HS, Seo HK (2018) Immune checkpoint inhibitors for urothelial carcinoma. Investig Clin Urol 59:285–296

    PubMed  PubMed Central  Google Scholar 

  • Klonowska K, Czubak K, Wojciechowska M, Handschuh L, Zmienko A, Figlerowicz M, Dams-Kozlowska H, Kozlowski P (2016) Oncogenomic portals for the visualization and analysis of genome-wide cancer data. Oncotarget 7:176–192

    PubMed  Google Scholar 

  • Kreitman RJ (2019) Hairy cell leukemia: present and future directions. Leuk Lymphoma 60:2869–2879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SS, Cheah YK (2019) The Interplay between micrornas and cellular components of tumour microenvironment (TME) on non-small-cell lung cancer (NSCLC) progression. J Immunol Res 2019:3046379

    PubMed  PubMed Central  Google Scholar 

  • Li R, Zhang S, Liu G (2022) Identification and validation of a pyroptosis-related prognostic model for colorectal cancer. Funct Integr Genomics 23:21

    PubMed  Google Scholar 

  • Li J, Hou H, Sun J, Ding Z, Xu Y, Li G (2023) Systematic pan-cancer analysis identifies transmembrane protein 158 as a potential therapeutic, prognostic and immunological biomarker. Funct Integr Genomics 23:105

    CAS  PubMed  Google Scholar 

  • Liu SH, Lin CY, Peng SY, Jeng YM, Pan HW, Lai PL, Liu CL, Hsu HC (2002) Down-regulation of annexin A10 in hepatocellular carcinoma is associated with vascular invasion, early recurrence, and poor prognosis in synergy with p53 mutation. Am J Pathol 160:1831–1837

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Liao Y, Xiang L, Jiang K, Li S, Huangfu M, Sun S (2017) A panel of autoantibodies as potential early diagnostic serum biomarkers in patients with breast cancer. Int J Clin Oncol 22:291–296

    CAS  PubMed  Google Scholar 

  • Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, Kovatich AJ, Benz CC, Levine DA, Lee AV, Omberg L, Wolf DM, Shriver CD, Thorsson V, Cancer Genome Atlas Research Network, Hu H (2018) An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173:400-416.e11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Zhang S, Dai W, Xie C, Li JC (2020) A comprehensive prognostic and immune analysis of SLC41A3 in pan-cancer. Front Oncol 10:586414

    PubMed  Google Scholar 

  • Liu C, Li N, Liu G, Feng X (2021a) Annexin A3 and cancer. Oncol Lett 22:834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Yang M, Guo Y, Lu X (2021b) Annexin A10 is a novel prognostic biomarker of papillary thyroid cancer. Ir J Med Sci 190:59–65

    CAS  PubMed  Google Scholar 

  • Luo S, Xie C, Wu P, He J, Tang Y, Xu J, Zhao S (2017) Annexin A2 is an independent prognostic biomarker for evaluating the malignant progression of laryngeal cancer. Exp Ther Med 14:6113–6118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lv Z, Qi L, Hu X, Mo M, Jiang H, Fan B, Li Y (2021) Zic family member 2 (ZIC2): a potential diagnostic and prognostic biomarker for pan-cancer. Front Mol Biosci 8:631067

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN, Kamińska B, Huelsken J, Omberg L, Gevaert O, Colaprico A, Czerwińska P, Mazurek S, Mishra L, Heyn H, Krasnitz A, Godwin AK, Lazar AJ, Cancer Genome Atlas Research Network, Stuart JM, Hoadley KA, Laird PW, Noushmehr H, Wiznerowicz M (2018) Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 173:338-354.e15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyoshi N, Yamamoto H, Mimori K, Yamashita S, Miyazaki S, Nakagawa S, Ishii H, Noura S, Ohue M, Yano M, Doki Y, Mori M (2014) ANXA9 gene expression in colorectal cancer: a novel marker for prognosis. Oncol Lett 8:2313–2317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nota C, Smits FJ, Woo Y, Borel Rinkes I, Molenaar IQ, Hagendoorn J, Fong Y (2019) Robotic developments in cancer surgery. Surg Oncol Clin N Am 28:89–100

    PubMed  Google Scholar 

  • Pai RK, Shadrach BL, Carver P, Heald B, Moline J, Church J, Kalady MF, Burke CA, Plesec TP, Lai KK, Gonzalo DH, Pai RK (2014) Immunohistochemistry for annexin A10 can distinguish sporadic from Lynch syndrome-associated microsatellite-unstable colorectal carcinoma. Am J Surg Pathol 38:518–525

    PubMed  Google Scholar 

  • Pan QZ, Pan K, Weng DS, Zhao JJ, Zhang XF, Wang DD, Lv L, Jiang SS, Zheng HX, Xia JC (2015) Annexin A3 promotes tumorigenesis and resistance to chemotherapy in hepatocellular carcinoma. Mol Carcinog 54:598–607

    CAS  PubMed  Google Scholar 

  • Pan S, Zhan Y, Chen X, Wu B, Liu B (2019) Identification of biomarkers for controlling cancer stem cell characteristics in bladder cancer by network analysis of transcriptome data stemness indices. Front Oncol 9:613

    PubMed  PubMed Central  Google Scholar 

  • Peng SY, Ou YH, Chen WJ, Li HY, Liu SH, Pan HW, Lai PL, Jeng YM, Chen DC, Hsu HC (2005) Aberrant expressions of annexin A10 short isoform, osteopontin and alpha-fetoprotein at chromosome 4q cooperatively contribute to progression and poor prognosis of hepatocellular carcinoma. Int J Oncol 26:1053–1061

    CAS  PubMed  Google Scholar 

  • Pessolano E, Belvedere R, Bizzarro V, Franco P, Marco I, Porta A, Tosco A, Parente L, Perretti M, Petrella A (2018) Annexin A1 may induce pancreatic cancer progression as a key player of extracellular vesicles effects as evidenced in the in vitro MIA PaCa-2 Model System. Int J Mol Sci 19:3878

  • Piao YJ, Kim HS, Han W, Moon WK (2022) Transcriptome analysis of SerpinB2-deficient breast tumors provides insight into deciphering SerpinB2-mediated roles in breast cancer progression. BMC Genomics 23:479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rong B, Zhao C, Liu H, Ming Z, Cai X, Gao W, Yang S (2014) Elevated serum annexin A1 as potential diagnostic marker for lung cancer: a retrospective case-control study. Am J Transl Res 6:558–569

    PubMed  PubMed Central  Google Scholar 

  • Schloer S, Pajonczyk D, Rescher U (2018) Annexins in translational research: hidden treasures to be found. Int J Mol Sci 19:1781

  • Shahbazi R, Sghia-Hughes G, Reid JL, Kubek S, Haworth KG, Humbert O, Kiem HP, Adair JE (2019) Targeted homology-directed repair in blood stem and progenitor cells with CRISPR nanoformulations. Nat Mater 18:1124–1132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer Statistics, 2021. CA Cancer J Clin 71:7–33

    PubMed  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups, National Cancer Institute of Canada Clinical Trials Group (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    CAS  PubMed  Google Scholar 

  • Tamborero D, Rubio-Perez C, Muiños F, Sabarinathan R, Piulats JM, Muntasell A, Dienstmann R, Lopez-Bigas N, Gonzalez-Perez A (2018) A pan-cancer landscape of interactions between solid tumors and infiltrating immune cell populations. Clin Cancer Res 24:3717–3728

    CAS  PubMed  Google Scholar 

  • Tong R, Chiang HH, Kohane DS (2013) Photoswitchable nanoparticles for in vivo cancer chemotherapy. Proc Natl Acad Sci U S A 110:19048–19053

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tong M, Fung TM, Luk ST, Ng KY, Lee TK, Lin CH, Yam JW, Chan KW, Ng F, Zheng BJ, Yuan YF, Xie D, Lo CM, Man K, Guan XY, Ma S (2015) ANXA3/JNK signaling promotes self-renewal and tumor growth, and its blockade provides a therapeutic target for hepatocellular carcinoma. Stem Cell Reports 5:45–59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Pan X, Yang H, Wang H, Wu Q, Zheng L, Xu B, Wang J, Shi X, Bai F, Liu H (2021) Bioactive Metal-Organic Frameworks with Specific Metal-Nitrogen (M-N) Active sites for efficient sonodynamic tumor therapy. ACS Nano 15:20003–20012

    CAS  PubMed  Google Scholar 

  • Wu B, Wu Y, Guo X, Yue Y, Li Y, He X, Chen Y, Zhao W, Liu J, Wu X, Shen A, Zhang S (2021) An integrative pan-cancer analysis of the oncogenic role of COPB2 in human tumors. Biomed Res Int 2021:7405322

    PubMed  PubMed Central  Google Scholar 

  • Xi Y, Ju R, Wang Y (2020) Roles of annexin A protein family in autophagy regulation and therapy. Biomed Pharmacother 130:110591

    CAS  PubMed  Google Scholar 

  • Xu H, Wu X, Dou Y, Zheng W (2022) The prognostic significance of annexin A family in glioblastoma. Ir J Med Sci 191:1539–1547

    CAS  PubMed  Google Scholar 

  • Yamanoi M, Yamanoi K, Fujii C, Fukuda MN, Nakayama J (2019) Annexin A1 expression is correlated with malignant potential of renal cell carcinoma. Int J Urol 26:284–290

    CAS  PubMed  Google Scholar 

  • Yao H, Sun C, Hu Z, Wang W (2016) The role of annexin A4 in cancer. Front Biosci (landmark Ed) 21:949–957

    CAS  PubMed  Google Scholar 

  • Yin J, Yan X, Yao X, Zhang Y, Shan Y, Mao N, Yang Y, Pan L (2012) Secretion of annexin A3 from ovarian cancer cells and its association with platinum resistance in ovarian cancer patients. J Cell Mol Med 16:337–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan HF, Li Y, Ye WH, Liu Y, Zhang ZD, Tan BB, Fan LQ, Zhao Q, Wang D, Jia N, Hao YJ (2019) Downregulation of annexin A7 decreases proliferation, migration, and invasion of gastric cancer cells by reducing matrix metalloproteinase 1 and 9 expression. Am J Transl Res 11:2754–2764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zabielska-Koczywąs K, Michalak K, Wojtalewicz A, Winiarczyk M, Adaszek Ł, Winiarczyk S, Lechowski R (2018) Proteomic differences in feline fibrosarcomas grown using doxorubicin-sensitive and -resistant cell lines in the chick embryo model. Int J Mol Sci 19:576

  • Zhang H, Zhang Z, Guo T, Chen G, Liu G, Song Q, Li G, Xu F, Dong X, Yang F, Cao C, Zhong D, Li S, Li Y, Wang M, Li B, Yang L (2023) Annexin A protein family: focusing on the occurrence, progression and treatment of cancer. Front Cell Dev Biol 11:1141331

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank all participants in the study.

Funding

This study was supported by Tianjin Municipal Health Industry Key Project (No. TJWJ2022XK014), the Scientific Research Project of Tianjin Municipal Education Commission (No. 2022ZD069), and the Youth Fund of Tianjin Medical University Second Hospital (No. 2020ydey09).

Author information

Authors and Affiliations

Authors

Contributions

Hl. H. and C. S. designed this study; Sy. Z. and C. S. wrote the manuscript; Z. Z., Y. Z., and Sb. Y. screened the database and collected the data; Yd. L and C. S. performed the bioinformatic analysis; Hl. H. and C. S. revised the manuscript; C. F., Z. L., Zl. W., Zj. W., Zl. L., J.G., and P. L. provided critical comments; All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Hailong Hu.

Ethics declarations

Ethics approval and consent to participate

This research has been approved by the ethics committee of the 2nd Affiliated Hospital of Tianjin Medical University (Ethics code: KY2021K003) with proper written documentation of informed consent.

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Zhang, S., Zhang, Z. et al. Pan-cancer evidence of prognosis, immune infiltration, and immunotherapy efficacy for annexin family using multi-omics data. Funct Integr Genomics 23, 211 (2023). https://doi.org/10.1007/s10142-023-01106-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-023-01106-z

Keywords

Navigation