Skip to main content
Log in

The complete mitochondrial genome and novel gene arrangement in Nesodiprion zhejiangensis Zhou & Xiao (Hymenoptera: Diprionidae)

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The complete mitochondrial genome (mitogenome) of the sawfly, Nesodiprion zhejiangensis Zhou & Xiao, was sequenced, assembled, and deposited in GenBank (Accession Number: OM501121). The 15,660 bp N. zhejiangensis mitogenome encodes for 2 ribosomal RNAs (rrnL and rrnS), 22 transfer RNAs (tRNAs), 13 protein-coding genes (PCGs), and an AT-rich region of 450 bp in length. The nucleotide composition is biased toward adenine and thymine (A + T = 81.8%). Each PCG is initiated by an ATN codon, except for cox2, which starts with a TTG. Of 13 PCGs, 9 have a TAA termination codon, while the remainder terminate with a TAG or a single T. All tRNAs have the classic cloverleaf structure, except for the dihydrouridine (DHU) arm of tRNAval, which forms a simple loop. There are 49 helices belonging to 6 domains in rrnL and 30 helices belonging to 4 domains in rrnS. In comparison to the ancestral architecture, N. zhejiangensis has the most rearranged mitogenome in Symphyta, in which rearrangement events of local inversion and transposition are identified in three gene clusters. Specifically, the main hotspot of gene rearrangement occurred between rrnS and trnY, and rearranged from rrnS-(AT-rich region)-I-Q-M-nd2-W–C-Y to rrnS-Q-W–C-nd2-I-M-(AT-rich region)-Y, involving a local inversion event of a large gene cluster and transposition events of some tRNAs. Transposition of trnA and trnR (rearranged from A-R to R-A) was observed at the nd3-nd5 gene junction while shuffling of trnP and trnT (rearranged from T-P to P–T) occurred at the nd4l-nd6 gene junction. While illegitimate inter-mtDNA recombination might explain the opposite orientations of transcription between rrnS and trnY, transposition events of tRNA in some gene blocks can be accounted for by the tandem duplication/random loss (TDRL) model. Our phylogenetic analysis suggests that N. zhejiangensis is closely related to congeneric species N. biremis and N. japonicus, which together form a sister lineage with the European pine sawfly, Neodiprion sertifer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in the NCBI GenBank at https://www.ncbi.nlm.nih.gov under the accession number OM501121. The associated BioProject, SRA, and BioSample numbers are PRJNA803467, SRR17888682, and SAMN25652947, respectively.

References

  • Arnason U, Gullberg A, Janke A, Kullberg M (2007) Mitogenomic analyses of caniform relationships. Mol Phylogenet Evol 45:863–874

    CAS  PubMed  Google Scholar 

  • Aydemir MN, Korkmaz EM (2020) Comparative mitogenomics of Hymenoptera reveals evolutionary differences in structure and composition. Int J Biol Macromol 144:460–472

    CAS  PubMed  Google Scholar 

  • Beckenbach AT, Joy JB (2009) Evolution of the mitochondrial genomes of gall midges (Diptera: Cecidomyiidae): rearrangement and severe truncation of tRNA genes. Genome Biol Evol 1:278–287

    PubMed  PubMed Central  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boore JL (2000) The duplication random-loss model for gene rearrangement exemplified by mitochondrial genomes of deuterosome animals. In: Sankoff D, Nadeau JH (eds) Comparative genomics: empirical and analytical approaches to gene order dynamics, map alignment and the evolution of gene families, 2nd edn. Springer, Netherlands, Dordrecht, The Netherlands, pp 133–147

    Google Scholar 

  • Boore JL, Collins TM, Stanton D, Daehler LL, Brown WM (1995) Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature 376:163–165

    CAS  PubMed  Google Scholar 

  • Cameron SL (2014) Insect mitochondrial genomics implications for evolution and phylogeny. Annu Rev Entomol 59:95–117

    CAS  PubMed  Google Scholar 

  • Cantatore P, Gadaleta MN, Roberti M, Saccone C, Wilson AC (1987) Duplication and remoulding of tRNA genes during the evolutionary rearrangement of mitochondrial genomes. Nature 329:853–855

    CAS  PubMed  Google Scholar 

  • Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22:252–271

    CAS  PubMed  Google Scholar 

  • Curole JP, Kocher TD (1999) Mitogenomics: digging deeper with complete mitochondrial genomes. Trends Ecol Evol 14:394–398

    CAS  PubMed  Google Scholar 

  • Dowton M (1999) Relationships among the cyclostome braconid (Hymenoptera: Braconidae) subfamilies inferred from a mitochondrial tRNA gene rearrangement. Mol Phylogenet Evol 11:283–287

    CAS  PubMed  Google Scholar 

  • Dowton M, Austin AD (1999) Evolutionary dynamics of a mitochondrial rearrangement “hot spot” in the Hymenoptera. Mol Biol Evol 16:298–309

    CAS  PubMed  Google Scholar 

  • Dowton M, Campbell NJN (2001) Intramitochondrial recombination-is it why some mitochondrial genes sleep around? Trends Ecol Evol 16:269–271

    CAS  PubMed  Google Scholar 

  • Dowton M, Castro LR, Campbell SL, Bargon SD, Austin AD (2003) Frequent mitochondrial gene rearrangements at the hymenopteran nad3-nad5 junction. J Mol Evol 56:517–526

    CAS  PubMed  Google Scholar 

  • Dowton M, Cameron SL, Austin AD, Whiting MF (2009a) Phylogenetic approaches for the analysis of mitochondrial genome sequence data in the Hymenoptera-A lineage with both rapidly and slowly evolving mitochondrial genomes. Mol Phylogenet Evol 52:512–519

    CAS  PubMed  Google Scholar 

  • Dowton M, Cameron SL, Dowavic JI, Austin AD, Whiting MF (2009b) Characterization of 67 mitochondrial tRNA gene rearrangements in the Hymenoptera suggests that mitochondrial tRNA gene position is selectively neutral. Mol Biol Evol 26:1607–1617

    CAS  PubMed  Google Scholar 

  • Du S, Niu G, Nyman T, Wei M (2018) Characterization of the mitochondrial genome of Arge bella Wei & Du sp. nov. (Hymenoptera: Argidae). Peer J 6:e6131

  • Gillespie JJ, Johnston JS, Cannone JJ, Gutell RR (2006) Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization and retrotransposable elements. Insect Mol Biol 15:657–686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan J, Zhang H, Zhang Z, Cao Y, Storey KB, Zhang J, Yu D (2021) The first complete mitochondrial genome of Euroleon coreanus (Okamoto, 1926) (Neuroptera: Myrmeleontidae) and its phylogeny. Mitochondrial DNA B Resour 6:1944–1946

    PubMed  PubMed Central  Google Scholar 

  • Jiang P, Li H, Song F, Cai Y, Wang J, Liu J, Cai W (2016) Duplication and remolding of tRNA genes in the mitochondrial genome of Reduvius tenebrosus (Hemiptera: Reduviidae). Int J Mol Sci 17:951

    PubMed  PubMed Central  Google Scholar 

  • Kilpert F, Podsiadlowski L (2006) The complete mitochondrial genome of the common sea slater, Ligia oceanica (Crustacea, Isopoda) bears a novel gene order and unusual control region features. BMC Genomics 7:241

    PubMed  PubMed Central  Google Scholar 

  • Komoto N, Yukuhiro K, Tomita S (2012) Novel gene rearrangements in the mitochondrial genome of a webspinner, Aposthonia japonica (Insecta: Embioptera). Genome 55:222–233

    CAS  PubMed  Google Scholar 

  • Korkmaz EM, Doğan Ö, Budak M, Başibüyük HH (2015) Two nearly complete mitogenomes of wheat stem borers, Cephus pygmenus (L.) and Cephus sareptanus Dovnar-Zapolskij (Hymenoptera: Cephidae): an unusual elongation of rrnS gene. Gene 558:254–264

    CAS  PubMed  Google Scholar 

  • Korkmaz EM, Budak M, Ördek MN, Başibüyük HH (2016) The complete mitogenomes of Calameuta filiformis (Eversmann, 1847) and Calameuta idolon (Rossi, 1794) (Hymenoptera: Cephidae): the remarkable features of the elongated A+T rich region in Cephini. Gene 576:404–411

    CAS  PubMed  Google Scholar 

  • Korkmaz EM, Doğan Ö, Durel BS, Altun BT, Budak M, Başibüyük HH (2018) Mitogenome organization and evolutionary history of the subfamily Cephinae (Hymenoptera: Cephidae) Syst Entomol 43:606–618

  • Kurabayashi A, Sumida M, Yonekawa H, Glaw F, Vences M, Hasegawa M (2008) Phylogeny, recombination, and mechanisms of stepwise mitochondrial genome reorganization in mantellid frogs from Madagascar. Mol Biol Evol 25:874–891

    CAS  PubMed  Google Scholar 

  • Lavrov DV, Boore JL, Brown WM (2002) Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. Mol Biol Evol 19:163–169

    CAS  PubMed  Google Scholar 

  • Li Y, Zhang R, Liu S, Donath A, Peters RS, Ware J, Misof B, Niehuis O, Pfrender ME, Zhou X (2017) The molecular evolutionary dynamics of oxidative phosphorylation (OXPHOS) genes in Hymenoptera. BMC Evol Biol 17:269

    PubMed  PubMed Central  Google Scholar 

  • Li Y, Wei M, Liu J, Niu G (2020) Characterization of the mitochondrial genome of Eutomosterthus vegetus Konow, 1898 (Hymenoptera: Tenthredinidae) and phylogentic analysis. Mitochondrial DNA B Resour 5:3033–3034

    PubMed  PubMed Central  Google Scholar 

  • Linard B, Arribas P, Andújar C, Crampton-Platt A, Vogler AP (2017) The mitogenome of Hydropsyche pellucidula (Hydropsychidae): first gene arrangement in the insect order Trichoptera. Mitochondrial DNA A DNA Mapp Seq Anal 28:71–72

    CAS  PubMed  Google Scholar 

  • Liu H, Li H, Song F, Gu W, Feng J, Cai W, Shao R (2017) Novel insights into mitochondrial gene rearrangement in thrips (Insecta: Thysanoptera) from the grass thrips. Anaphothrips Obscurus Sci Rep 7:4284

    PubMed  Google Scholar 

  • Lunt DH, Hyman BC (1997) Animal mitochondrial DNA recombination. Nature 387:247

    CAS  PubMed  Google Scholar 

  • Luo X, Wei M, Niu G (2019) Nearly complete mitochondrial genome of Siobla xizangensis Xiao, Huang & Zhou, 1988 (Hymenoptera: Tenthredinidae) and phylogenetic analysis. Mitochondrial DNA B Resour 4:4102–4103

    PubMed  PubMed Central  Google Scholar 

  • Macey JR, Larson A, Ananjeva NB, Fang Z, Papenfuss TJ (1997) Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Mol Biol Evol 14:91–104

    CAS  PubMed  Google Scholar 

  • Mao M, Austin AD, Johnson NF, Dowton M (2014) Coexistence of minicircular and a highly rearranged mtDNA molecule suggests that recombination shapes mitochondrial genome organization. Mol Biol Evol 31:636–644

    CAS  PubMed  Google Scholar 

  • Masta SE, Boore JL (2004) The complete mitochondrial genome sequence of the spider Habronattus oregonensis reveals rearranged and extremely truncated tRNAs. Mol Biol Evol 21:893–902

    CAS  PubMed  Google Scholar 

  • Nardi F, Carapelli A, Frati F (2012) Repeated regions in mitochondrial genomes: distribution, origin and evolutionary significance. Mitochondrion 12:483–491

    CAS  PubMed  Google Scholar 

  • Negrisolo E, Babbucci M, Patarnello T (2011) The mitochondrial genome of the ascalaphid owlfly Libelloides macaronius and comparative evolutionary mitochondriomics of neuropterid insects. BMC Genomics 12:221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niu G, Korkmaz EM, Doğan Ö, Zhang Y, Aydemir MN, Budak M, Du S, Başıbüyük HH, Wei M (2019a) The first mitogenomes of the superfamily Pamphilioidea (Hymenoptera: Symphyta): Mitogenome architecture and phylogenetic inference. Int J Biol Macromol 124:185–199

    CAS  PubMed  Google Scholar 

  • Niu G, Budak M, Korkmaz EM, Doğan Ö, Nel A, Wan S, Cai C, Jouault C, Li M, Wei M (2022) Phylogenomic analyses of the Tenthredinoidea support the familial rank of Athaliidae (Insecta, Tenthredinoidea). Insects 13:858

    PubMed  PubMed Central  Google Scholar 

  • Niu G, Zhang Y, Li Z, Wei M (2019b) Characterization of the mitochondrial genome of Analcellicampa xanthosoma gen. et sp. nov. (Hymenoptera: Tenthredinidae). Peer J 7:e6866

  • Rawlings TA, Collins TM, Bieler R (2003) Changing identities: tRNA duplication and remolding within animal mitochondrial genomes. Proc Natl Acad Sci USA 100:5700–15705

    Google Scholar 

  • San Mauro D, Gower DJ, Zardoya R, Wilkinson M (2006) A hotspot of gene order rearrangement by tandem duplication and random loss in the vertebrate mitochondrial genome. Mol Biol Evol 23:227–234

    CAS  PubMed  Google Scholar 

  • Shao R, Barker SC (2003) The highly rearranged mitochondrial genome of the plague thrips, Thrips imaginis (Insecta: Thysanoptera): convergence of two novel gene boundaries and an extraordinary arrangement of rRNA genes. Mol Biol Evol 20:362–370

    CAS  PubMed  Google Scholar 

  • Shao R, Mitani H, Barker SC, Takahashi M, Fukunaga M (2005) Novel mitochondrial gene content and gene arrangement indicate illegitimate inter-mtDNA recombination in the chigger mite, Leptotrombidium pallidum. J Mol Evol 60:764–773

    CAS  PubMed  Google Scholar 

  • Shao R, Zhu X, Barker SC, Herd K (2012) Evolution of extensively fragmented mitochondrial genomes in the lice of humans. Genome Biol Evol 4:1088–1101

    PubMed  PubMed Central  Google Scholar 

  • Smith MJ, Banfield DK, Doteval K, Gorski S, Kowbel DJ (1989) Gene arrangement in sea star mitochondrial DNA demonstrates a major inversion event during echinoderm evolution. Gene 76:181–185

    CAS  PubMed  Google Scholar 

  • Song F, Li H, Shao R, Bai X, Zheng X, Heiss E, Cai W (2016a) Rearrangement of mitochondrial tRNA genes in flat bugs (Hemiptera: Aradidae). Sci Rep 6:25725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song S, Tang P, Wei S, Chen X (2016b) Comparative and phylogenetic analysis of the mitochondrial genomes in basal hymenopterans. Sci Rep 6:20972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song S, Wang Z, Li Y, Wei S, Chen X (2016c) The mitochondrial genome of Tenthredo tienmushana (Takeuchi) and a related phylogenetic analysis of the sawflies (Insecta: Hymenoptera). Mitochondrial DNA A DNA Mapp Seq Anal 27:2860–2861

    CAS  PubMed  Google Scholar 

  • Song F, Li H, Liu G, Wang W, James P, Colwell DD, Tran A, Gong S, Cai W, Shao R (2019) Mitochondrial genome fragmentation unites the parasitic lice of eutherian mammals. Syst Biol 68:430–440

    CAS  PubMed  Google Scholar 

  • Sun Z, Liu Y, Wilson JJ, Chen Z, Song F, Cai W, Li H (2019) Mitochondrial genome of Phalantus geniculatus (Hemiptera: Reduviidae): trnT duplication and phylogenetic implications. Int J Biol Macromol 129:110–115

    CAS  PubMed  Google Scholar 

  • Sun X, Yu D, Xie Z, Dong J, Ding Y, Yao H, Greenslade P (2020) Phylomitogenomic analyses on collembolan higher taxa with enhanced taxon sampling and discussion on method selection. PLoS ONE 15:e0230827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang P, Zhu J, Zheng B, Wei S, Sharkey M, Chen X, Vogler AP (2019) Mitochondrial phylogenomics of the Hymenoptera. Mol Phyloget Evol 131:8–18

    CAS  Google Scholar 

  • Thao ML, Baumann L, Baumann P (2004) Organization of the mitochondrial genomes of whiteflies, aphids and pysillids (Hemiptera: Sternorrhyncha). BMC Evol Biol 4:25

    PubMed  PubMed Central  Google Scholar 

  • Timmermans MJ, Vogler AP (2012) Phylogenetically informative rearrangements in mitochondrial genomes of Coleoptera, and monophyly of aquatic elateriform beetles (Dryopoidea). Mol Phylogenet Evol 63:299–304

    PubMed  Google Scholar 

  • Wan X, Kim MI, Kim MJ (2012) Complete mitochondrial genome of the free-living earwing, Challia fletcheri (Dermaptera: Pygidicranidae) and phylogeny of Polyneoptera. PLoS ONE 7:e42056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wan S, Wei M, Niu G (2021) The complete mitochondrial genome sequenmace of Sinopoppia nigroflagella Wei, 1997 (Hymenoptera: Tenthredinidae) reveals a new gene order. Mitochondrial DNA B Resour 6:999–1000

    PubMed  PubMed Central  Google Scholar 

  • Wang Q, Li E, Li N, Wang Y, Zhang Z, Zhang Y (2018) Infection of a nucleopolyhedrovirus to Nesodiprion zhejiangensis Zhou & Xiao (Hymenoptera: Diprionidae). Biocontrol Sci Techn 28:761–771

    Google Scholar 

  • Wei M, Nie H (1997) Preliminary phylogeny of Symphyta (Hymenoptera). J Central South Forestry University 17:36–41

    Google Scholar 

  • Wei S, Shi M, He J, Sharkey M, Chen X (2009) The complete mitochondrial genome of Diadegma semiclausum (hymenoptera: ichneumonidae) indicates extensive independent evolutionary events. Genome 52:308–319

    CAS  PubMed  Google Scholar 

  • Wei S, Li Q, van Achterberg K, Chen X (2014) Two mitochondrial genomes from the families Bethylidae and Mutillidae: Independent rearrangement of protein-coding genes and higher-level phylogeny of the Hymenoptera. Mol Phylogenet Evol 77:1–10

    CAS  PubMed  Google Scholar 

  • Wei S, Niu F, Du B (2016) Rearrangement of trnQ-trnM in the mitochondrial genome of Allantus luctifer (Smith) (Hymenoptera: Tenthredinidae). Mitochondrial DNA A DNA Mapp Seq Anal 27:856–858

    CAS  PubMed  Google Scholar 

  • Wei M (1994) Studies on the phylogeny of Tenthredinoidea (s. str.) with the taxonomy of chinese Tenthredinoidea. Dissertation, Chinese Academy of Science

  • Xiao G, Huang X, Zhou S (1981) Three new species of Nesodiprion from China (Hymenoptera, Symphyta, Diprionidae). Scientia Silvae Sinicae 17:247–249

    Google Scholar 

  • Xiao G, Huang X, Zhou S (1984) Studies on the Diprionidae in China (Hymenoptera: Symphyta). Scientia Silvae Sinicae 20:366–371

    Google Scholar 

  • Zeng J (2014) Analysis of damage characteristics and risk of Nesodiprion zhejiangensis. Biological Disaster Sci 37:244–246

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to anonymous reviewers for their constructive comments and suggestions. Special thanks go to Hu Li (China Agricultural University) for his insights into the organization and architecture of insect mitochondrial genomes.

Funding

This research was supported by the Fundamental Research Funds for the Central Non-profit Research Institution of CAF (Grant Number: CAFYBB2018QB005; CAFYBB2018GB001), the Beijing Municipal Science and Technology Project (Z201100008020001) and the National Key Research and Development Program of China (Grant number: 2018YFD0600202).

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and Q.H.W. designed the experiments; C.B. and J.C. carried out the research; Q.H.W. and D.X. contributed reagents/materials/analysis tools; Q.H.W. and Y.F.W analyzed the data; Q.H.W. and A.M. drafted the manuscript, X.Z. and Y.F.W. revised the manuscript. All authors gave the final approval for publication.

Corresponding authors

Correspondence to Qinghua Wang or Xuguo Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Research procedures in this work did not violate any relevant laws and regulations. No relevant ethics committee(s) or institution(s) were applicable for the materials used in this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, C., Wu, Y., Merchant, A. et al. The complete mitochondrial genome and novel gene arrangement in Nesodiprion zhejiangensis Zhou & Xiao (Hymenoptera: Diprionidae). Funct Integr Genomics 23, 41 (2023). https://doi.org/10.1007/s10142-022-00959-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-022-00959-0

Keywords

Navigation