Skip to main content

Advertisement

Log in

Epigenetics and epigenomics: underlying mechanisms, relevance, and implications in crop improvement

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Epigenetics is defined as changes in gene expression that are not associated with changes in DNA sequence but due to the result of methylation of DNA and post-translational modifications to the histones. These epigenetic modifications are known to regulate gene expression by bringing changes in the chromatin state, which underlies plant development and shapes phenotypic plasticity in responses to the environment and internal cues. This review articulates the role of histone modifications and DNA methylation in modulating biotic and abiotic stresses, as well as crop improvement. It also highlights the possibility of engineering epigenomes and epigenome-based predictive models for improving agronomic traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agius F, Kapoor A, Zhu J-K (2006) Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proc Natl Acad Sci U S A 103:11796–11801

    PubMed  CAS  PubMed Central  Google Scholar 

  • Aller ES, Jagd LM, Kliebenstein DJ, Burow M (2018) Comparison of the relative potential for epigenetic and genetic variation to contribute to trait stability. G3 8:1733–1746

    PubMed  CAS  PubMed Central  Google Scholar 

  • Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17:487–500

    PubMed  CAS  Google Scholar 

  • Alonso C, Ramos-Cruz D, Becker C (2019) The role of plant epigenetics in bioticinteractions. New Phytol 221:731–737

    PubMed  CAS  Google Scholar 

  • Alvarez-Venegas R, Pien S, Sadder M, Witmer X, Grossniklaus U, Avramova Z (2003) ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes. Curr Biol 13:627–637

    PubMed  CAS  Google Scholar 

  • Auger D, Ream T, Birchler J (2004) A test for a metastable epigenetic component of heterosis using haploid induction in maize. Theor Appl Genet 108:1017–1023

    PubMed  CAS  Google Scholar 

  • Baek D, Shin G, Kim MC, Shen M, Lee SY, Yun D-J (2020) Histone Deacetylase HDA9 with ABI4 contributes to abscisic acid homeostasis in drought stress response. Front Plant Sci 11:143

    PubMed  PubMed Central  Google Scholar 

  • Bai F, Settles A (2015) Imprinting in plants as a mechanism to generate seed phenotypic diversity. Front Plant Sci 5:780

    PubMed  PubMed Central  Google Scholar 

  • Barber WT, Zhang W, Win H, Varala KK, Dorweiler JE, Hudson ME, Moose SP (2012) Repeat associated small RNAs vary among parents and following hybridization in maize. Proc Natl Acad Sci U S A 109:10444–10449

    PubMed  CAS  PubMed Central  Google Scholar 

  • Barraza A, Cabrera-Ponce JL, Gamboa-Becerra R, Luna-Martínez F, Winkler R, Alvarez-Venegas R (2015) The Phaseolus vulgaris PvTRX1h gene regulates plant hormone biosynthesis in embryogenic callus from common bean. Front Plant Sci 6:577

    PubMed  PubMed Central  Google Scholar 

  • Bartee L, Malagnac F, Bender J (2001) Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev 15:1753–1758

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bateson W, Pellew C (1915) On the genetics of “rogues” among culinary peas (Pisum sativum). J Genet 5:13–36

    Google Scholar 

  • Becker C, Hagmann J, Müller J, Koenig D, Stegle O, Borgwardt K, Weigel D (2011) Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480:245–249

    PubMed  CAS  Google Scholar 

  • Bender J, Fink GR (1995) Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. Cell 83:725–734

    PubMed  CAS  Google Scholar 

  • Benhamed M, Bertrand C, Servet C, Zhou D-X (2006) Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell 18:2893–2903

    PubMed  CAS  PubMed Central  Google Scholar 

  • Berr A, Xu L, Gao J, Cognat V, Steinmetz A, Dong A, Shen W-H (2009) SET DOMAIN GROUP25 encodes a histone methyltransferase and is involved in FLOWERING LOCUS C activation and repression of flowering. Plant Physiol 151:1476–1485

    PubMed  CAS  PubMed Central  Google Scholar 

  • Berr A, McCallum EJ, Alioua A, Heintz D, Heitz T, Shen W-H (2010) Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi. Plant Physiol 154:1403–1414

    PubMed  CAS  PubMed Central  Google Scholar 

  • Berry S, Dean C (2015) Environmental perception and epigenetic memory: mechanistic insight through FLC. Plant J 83:133–148

    PubMed  CAS  PubMed Central  Google Scholar 

  • Birchler JA (2012) Heterosis-what art thou? Maydica 57:92–95

    Google Scholar 

  • Bocchini M et al (2015) Iron deficiency in barley plants: phytosiderophore release, iron translocation, and DNA methylation front. Plant Sci 6:514

    Google Scholar 

  • Brink RA (1958) Paramutation at the R locus in maize. In: Cold Spring Harbor symposia on quantitative biology, 1958. Cold Spring Harbor Laboratory Press, pp 379–391

  • Buszewicz D, Archacki R, Palusiński A, Kotliński M, Fogtman A, Iwanicka-Nowicka R, Sosnowska K, Kuciński J, Pupel P, Olędzki J, Dadlez M, Misicka A, Jerzmanowski A, Koblowska MK (2016) HD2C histone deacetylase and a SWI/SNF chromatin remodelling complex interact and both are involved in mediating the heat stress response in Arabidopsis. Plant Cell Environ 39:2108–2122

    PubMed  CAS  Google Scholar 

  • Cao X, Jacobsen SE (2002) Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol 12:1138–1144

    PubMed  CAS  Google Scholar 

  • Cartagena JA, Matsunaga S, Seki M, Kurihara D, Yokoyama M, Shinozaki K, Fujimoto S, Azumi Y, Uchiyama S, Fukui K (2008) The Arabidopsis SDG4 contributes to the regulation of pollen tube growth by methylation of histone H3 lysines 4 and 36 in mature pollen. Dev Biol 315:355–368

    PubMed  CAS  Google Scholar 

  • Chandler VL, Stam M (2004) Chromatin conversations: mechanisms and implications of paramutation. Nat Rev Genet 5:532–544

    PubMed  CAS  Google Scholar 

  • Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15:57–71

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen Q, Chen X, Wang Q, Zhang F, Lou Z, Zhang Q, Zhou D-X (2013) Structural basis of a histone H3 lysine 4 demethylase required for stem elongation in rice. PLoS Genet:9

  • Chen C-Y, Wu K, Schmidt W (2015a) The histone deacetylase HDA19 controls root cell elongation and modulates a subset of phosphate starvation responses in Arabidopsis. Sci Rep 5:15708

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen W, Kong J, Qin C, Yu S, Tan J, Chen YR, Wu C, Wang H, Shi Y, Li C, Li B, Zhang P, Wang Y, Lai T, Yu Z, Zhang X, Shi N, Wang H, Osman T, Liu Y, Manning K, Jackson S, Rolin D, Zhong S, Seymour GB, Gallusci P, Hong Y (2015b) Requirement of CHROMOMETHYLASE3 for somatic inheritance of the spontaneous tomato epimutation Colourless non-ripening. Sci Rep 5:9192

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cheng X, Zhang S, Tao W, Zhang X, Liu J, Sun J, Zhang H, Pu L, Huang R, Chen T (2018) INDETERMINATE SPIKELET1 recruits histone deacetylase and a transcriptional repression complex to regulate rice salt tolerance. Plant Physiol 178:824–837

    PubMed  CAS  PubMed Central  Google Scholar 

  • Choi SM, Song HR, Han SK, Han M, Kim CY, Park J, Lee YH, Jeon JS, Noh YS, Noh B (2012) HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acid-mediated defense responses in Arabidopsis. Plant J 71:135–146

    PubMed  CAS  Google Scholar 

  • Conrath U, Beckers GJ, Langenbach CJ, Jaskiewicz MR (2015) Priming for enhanced defense. Annu Rev Phytopathol 53:97–119

    PubMed  CAS  Google Scholar 

  • Corbin KR, Bolt B, López CMR (2020) Breeding for beneficial microbial communities using epigenomics. Front Microbiol 11

  • Cortijo S, Wardenaar R, Colome-Tatche M, Gilly A, Etcheverry M, Labadie K, Caillieux E, Hospital F, Aury JM, Wincker P, Roudier F, Jansen RC, Colot V, Johannes F (2014) Mapping the epigenetic basis of complex traits. Science 343:1145–1148

    PubMed  CAS  Google Scholar 

  • Crisp PA, Ganguly D, Eichten SR, Borevitz JO, Pogson BJ (2016) Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics. Sci Adv 2:e1501340

    PubMed  PubMed Central  Google Scholar 

  • Cuerda-Gil D, Slotkin RK (2016) Non-canonical RNA-directed DNA methylation. Nat Plants 2:1–8

    Google Scholar 

  • Dapp M et al (2015) Heterosis and inbreeding depression of epigenetic Arabidopsis hybrids. Nat Plants 1:1–8

    Google Scholar 

  • de la Rosa Santamaria R et al (2014) MSH1-induced non-genetic variation provides a source of phenotypic diversity in Sorghum bicolor. PLoS One:9

  • De-La-Peña C, Rangel-Cano A, Alvarez-Venegas R (2012) Regulation of disease-responsive genes mediated by epigenetic factors: interaction of Arabidopsis–Pseudomonas. Mol Plant Pathol 13:388–398

  • Deleris A, Stroud H, Bernatavichute Y, Johnson E, Klein G, Schubert D, Jacobsen SE (2012) Loss of the DNA methyltransferase MET1 induces H3K9 hypermethylation at PcG target genes and redistribution of H3K27 trimethylation to transposons in Arabidopsis thaliana. PLoS Genet 8:e1003062

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ding B, Wang G-L (2015) Chromatin versus pathogens: the function of epigenetics in plant immunity. Front Plant Sci 6:675

    PubMed  PubMed Central  Google Scholar 

  • Ding Y, Wang X, Su L, Zhai JX, Cao SY, Zhang DF, Liu CY, Bi YP, Qian Q, Cheng ZK, Chu CC, Cao XF (2007) SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice. Plant Cell 19:9–22

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ding B, del Rosario BM, Ning Y, Meyers BC, Wang G-L (2012) HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice. Plant Cell 24:3783–3794

    PubMed  CAS  PubMed Central  Google Scholar 

  • Douhovnikoff V, Dodd RS (2015) Epigenetics: a potential mechanism for clonal plant success. Plant Ecol 216:227–233

    Google Scholar 

  • Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, Dixon JE, Ecker JR (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci U S A 109:E2183–E2191

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dubin MJ, Zhang P, Meng D, Remigereau MS, Osborne EJ, Paolo Casale F, Drewe P, Kahles A, Jean G, Vilhjálmsson B, Jagoda J, Irez S, Voronin V, Song Q, Long Q, Rätsch G, Stegle O, Clark RM, Nordborg M (2015) DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. Elife 4:e05255

    PubMed  PubMed Central  Google Scholar 

  • Earley KW, Shook MS, Brower-Toland B, Hicks L, Pikaard CS (2007) In vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for histone hyperacetylation in gene activation. Plant J 52:615–626

    PubMed  CAS  Google Scholar 

  • Eichten SR, Briskine R, Song J, Li Q, Swanson-Wagner R, Hermanson PJ, Waters AJ, Starr E, West PT, Tiffin P, Myers CL, Vaughn MW, Springer NM (2013) Epigenetic and genetic influences on DNA methylation variation in maize populations. Plant Cell 25:2783–2797

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eriksson MC, Szukala A, Tian B, Paun O (2020) Current research frontiers in plant epigenetics: an introduction to a virtual issue. New Phytol 226:285–288

    PubMed  PubMed Central  Google Scholar 

  • Fang H, Liu X, Thorn G, Duan J, Tian L (2014) Expression analysis of histone acetyltransferases in rice under drought stress. Biochem Biophys Res Commun 443:400–405

    PubMed  CAS  Google Scholar 

  • Feng J, Shen WH (2014) Dynamic regulation and function of histone monoubiquitination in plants. Front Plant Sci 5:83

    PubMed  PubMed Central  Google Scholar 

  • Fina JP, Casati P (2015) HAG3, a histone acetyltransferase, affects UV-B responses by negatively regulating the expression of DNA repair enzymes and sunscreen content in Arabidopsis thaliana. Plant Cell Physiol 56:1388–1400

    PubMed  CAS  Google Scholar 

  • Finnegan EJ, Ford B, Wallace X, Pettolino F, Griffin PT, Schmitz RJ, Zhang P, Barrero JM, Hayden MJ, Boden SA, Cavanagh CA, Swain SM, Trevaskis B (2018) Zebularine treatment is associated with deletion of FT-B1 leading to an increase in spikelet number in bread wheat. Plant Cell Environ 41:1346–1360

    PubMed  CAS  Google Scholar 

  • Forestan C, Farinati S, Rouster J, Lassagne H, Lauria M, Dal Ferro N, Varotto S (2018) Control of maize vegetative and reproductive development, fertility, and rRNAs silencing by histone deacetylase 108. Genetics. 208:1443–1466

    PubMed  CAS  PubMed Central  Google Scholar 

  • Freeling M (2012) Response to Birchler: Heterosis is partly a sub-problem of quantitative genetics, but its solution may depend on understanding the mysterious genetics of quantity. Maydica 57:96–97

    Google Scholar 

  • Gaj T, Sirk SJ, Shui SL, Liu J (2016) Genome-editing technologies: principles and applications. Cold Spring Harb Perspect Biol 8:a023754

    PubMed  PubMed Central  Google Scholar 

  • Gallego-Bartolomé J, Gardiner J, Liu W, Papikian A, Ghoshal B, Kuo HY, Zhao JMC, Segal DJ, Jacobsen SE (2018) Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proc Natl Acad Sci U S A 115:E2125–E2134

    PubMed  PubMed Central  Google Scholar 

  • Gallusci P, Dai Z, Génard M, Gauffretau A, Leblanc-Fournier N, Richard-Molard C, Vile D, Brunel-Muguet S (2017) Epigenetics for plant improvement: current knowledge and modeling avenues. Trends Plant Sci 22:610–623

    PubMed  CAS  Google Scholar 

  • Ganguly DR, Crisp PA, Eichten SR, Pogson BJ (2017) The Arabidopsis DNA methylome is stable under transgenerational drought stress. Plant Physiol 175:1893–1912

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ganguly DR, Crisp PA, Eichten SR, Pogson BJ (2018) Maintenance of pre-existing DNA methylation states through recurring excess-light stress. Plant Cell Environ 41:1657–1672

    PubMed  CAS  Google Scholar 

  • Gáspár B, Bossdorf O, Durka W (2019) Structure, stability and ecological significance of natural epigenetic variation: a large-scale survey in Plantago lanceolata. New Phytol 221:1585–1596

    PubMed  Google Scholar 

  • Gehring M, Huh JH, Hsieh TF, Penterman J, Choi Y, Harada JJ, Goldberg RB, Fischer RL (2006) DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 124:495–506

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goettel W, Messing J (2013) Paramutagenicity of a p1 epiallele in maize. Theor Appl Genet 126:159–177

    PubMed  CAS  Google Scholar 

  • Gong Z, Yu H, Huang J, Yi C, Gu M (2009) Unstable transmission of rice chromosomes without functional centromeric repeats in asexual propagation. Chromosom Res 17:863–872

    CAS  Google Scholar 

  • Greaves IK, Gonzalez-Bayon R, Wang L, Zhu A, Liu PC, Groszmann M, Peacock WJ, Dennis ES (2015) Epigenetic changes in hybrids. Plant Physiol 168:1197–1205

    PubMed  CAS  PubMed Central  Google Scholar 

  • Grewal SI (2010) RNAi-dependent formation of heterochromatin and its diverse functions. Curr Opin Genet Dev 20:134–141

    PubMed  CAS  PubMed Central  Google Scholar 

  • Griffin PT, Niederhuth CE, Schmitz RJ (2016) A comparative analysis of 5-azacytidine-and zebularine-induced DNA demethylation. G3 6:2773–2780

    PubMed  CAS  PubMed Central  Google Scholar 

  • Groszmann M, Greaves IK, Albertyn ZI, Scofield GN, Peacock WJ, Dennis ES (2011) Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc Natl Acad Sci U S A 108:2617–2622

    PubMed  CAS  PubMed Central  Google Scholar 

  • Guo L, Yu Y, Law JA, Zhang X (2010) SET DOMAIN GROUP2 is the major histone H3 lysine 4 trimethyltransferase in Arabidopsis. Proc Natl Acad Sci U S A 107:18557–18562

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gutiérrez-Marcos JF, Costa LM, Dal Prà M, Scholten S, Kranz E, Perez P, Dickinson HG (2006) Epigenetic asymmetry of imprinted genes in plant gametes. Nat Genet 38:876–878

    PubMed  Google Scholar 

  • Hagmann J et al (2015) Century-scale methylome stability in a recently diverged Arabidopsis thaliana lineage. PLoS Genet:11

  • Han Z, Yu H, Zhao Z, Hunter D, Luo X, Duan J, Tian L (2016) AtHD2D gene plays a role in plant growth, development, and response to abiotic stresses in Arabidopsis thaliana. Front Plant Sci 7:310

    PubMed  PubMed Central  Google Scholar 

  • He G, He H, Deng XW (2013) Epigenetic variations in plant hybrids and their potential roles in heterosis. J Genet Genomics 40:5e210

    Google Scholar 

  • Ho W, Ooi S, Mayes S, Namasivayam P, Ong-Abdullah M, Chin C (2013) Methylation levels of a novel genetic element, EgNB3 as a candidate biomarker associated with the embryogenic competency of oil palm. Tree Genet Genomes 9:1099–1107

    Google Scholar 

  • Hofmeister BT, Lee K, Rohr NA, Hall DW, Schmitz RJ (2017) Stable inheritance of DNA methylation allows creation of epigenotype maps and the study of epiallele inheritance patterns in the absence of genetic variation. Genome Biol 18:155

    PubMed  PubMed Central  Google Scholar 

  • Hollick JB (2012) Paramutation: a trans-homolog interaction affecting heritable gene regulation. Curr Opin Plant Biol 15:536–543

    PubMed  CAS  Google Scholar 

  • Hollister JD, Gaut BS (2009) Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19:1419–1428

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hollwey E, Watson M, Meyer P (2016) Expression of the C-terminal domain of mammalian TET3 DNA dioxygenase in Arabidopsis thaliana induces heritable methylation changes at rDNA loci. Adv Biosci Biotechnol 7:243–250

    CAS  Google Scholar 

  • Hsieh T-F, Shin J, Uzawa R, Silva P, Cohen S, Bauer MJ, Hashimoto M, Kirkbride RC, Harada JJ, Zilberman D, Fischer RL (2011) Regulation of imprinted gene expression in Arabidopsis endosperm. Proc Natl Acad Sci U S A 108:1755–1762

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hu Y, Morota G, Rosa GJ, Gianola D (2015) Prediction of plant height in Arabidopsis thaliana using DNA methylation data. Genetics 201:779–793

    PubMed  CAS  PubMed Central  Google Scholar 

  • Huang S, Zhang A, Jin JB, Zhao B, Wang TJ, Wu Y, Wang S, Liu Y, Wang J, Guo P, Ahmad R, Liu B, Xu ZY (2019) Arabidopsis histone H3K4 demethylase JMJ 17 functions in dehydration stress response. New Phytol 223:1372–1387

    PubMed  CAS  Google Scholar 

  • Ibarra CA, Feng X, Schoft VK, Hsieh TF, Uzawa R, Rodrigues JA, Zemach A, Chumak N, Machlicova A, Nishimura T, Rojas D, Fischer RL, Tamaru H, Zilberman D (2012) Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337:1360–1364

    PubMed  CAS  PubMed Central  Google Scholar 

  • Inagaki S, Miura-Kamio A, Nakamura Y, Lu F, Cui X, Cao X, Kimura H, Saze H, Kakutani T (2010) Autocatalytic differentiation of epigenetic modifications within the Arabidopsis genome. EMBO J 29:3496–3506

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ishihara H et al (2019) Primed histone demethylation regulates shoot regenerative competency. Nat Commun 10:1–15

    CAS  Google Scholar 

  • Jacob Y, Feng S, LeBlanc CA, Bernatavichute YV, Stroud H, Cokus S, Johnson LM, Pellegrini M, Jacobsen SE, Michaels SD (2009) ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing. Nat Struct Mol Biol 16:763–768

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ji L, Jordan WT, Shi X, Hu L, He C, Schmitz RJ (2018) TET-mediated epimutagenesis of the Arabidopsis thaliana methylome. Nat Commun 9:1–9

    Google Scholar 

  • Jiang D, Berger F (2017) Histone variants in plant transcriptional regulation. BBA-Gene Regul Mech 1860:123–130

    CAS  Google Scholar 

  • Jiang D, Yang W, He Y, Amasino RM (2007) Arabidopsis relatives of the human lysine-specific demethylase1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition. Plant Cell 19:2975–2987

    PubMed  CAS  PubMed Central  Google Scholar 

  • Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N, Bulski A, Albuisson J, Heredia F, Audigier P, Bouchez D, Dillmann C, Guerche P, Hospital F, Colot V (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5

  • Johnson LM, du J, Hale CJ, Bischof S, Feng S, Chodavarapu RK, Zhong X, Marson G, Pellegrini M, Segal DJ, Patel DJ, Jacobsen SE (2014) SRA-and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature 507:124–128

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kathiria P, Sidler C, Golubov A, Kalischuk M, Kawchuk LM, Kovalchuk I (2010) Tobacco mosaic virus infection results in an increase in recombination frequency and resistance to viral, bacterial, and fungal pathogens in the progeny of infected tobacco plants. Plant Physiol 153:1859–1870

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kawakatsu T, Huang SSC, Jupe F, Sasaki E, Schmitz RJ, Urich MA, Castanon R, Nery JR, Barragan C, He Y, Chen H, Dubin M, Lee CR, Wang C, Bemm F, Becker C, O’Neil R, O’Malley RC, Quarless DX, Schork NJ, Weigel D, Nordborg M, Ecker JR, Alonso-Blanco C, Andrade J, Becker C, Bemm F, Bergelson J, Borgwardt K, Chae E, Dezwaan T, Ding W, Ecker JR, Expósito-Alonso M, Farlow A, Fitz J, Gan X, Grimm DG, Hancock A, Henz SR, Holm S, Horton M, Jarsulic M, Kerstetter RA, Korte A, Korte P, Lanz C, Lee CR, Meng D, Michael TP, Mott R, Muliyati NW, Nägele T, Nagler M, Nizhynska V, Nordborg M, Novikova P, Picó FX, Platzer A, Rabanal FA, Rodriguez A, Rowan BA, Salomé PA, Schmid K, Schmitz RJ, Seren Ü, Sperone FG, Sudkamp M, Svardal H, Tanzer MM, Todd D, Volchenboum SL, Wang C, Wang G, Wang X, Weckwerth W, Weigel D, Zhou X (2016) Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell 166:492–505

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kermicle J (1970) Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics 66:69

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kim J-M, To TK, Ishida J, Morosawa T, Kawashima M, Matsui A, Toyoda T, Kimura H, Shinozaki K, Seki M (2008) Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol 49:1580–1588

    PubMed  CAS  Google Scholar 

  • Kim J-M, To TK, Ishida J, Matsui A, Kimura H, Seki M (2012) Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana. Plant Cell Physiol 53:847–856

    PubMed  CAS  Google Scholar 

  • Kooke R, Johannes F, Wardenaar R, Becker F, Etcheverry M, Colot V, Vreugdenhil D, Keurentjes JJB (2015) Epigenetic basis of morphological variation and phenotypic plasticity in Arabidopsis thaliana. Plant Cell 27:337–348

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kwon CS, Lee D, Choi G, Chung WI (2009) Histone occupancy-dependent and-independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis. Plant J 60:112–121

    PubMed  CAS  Google Scholar 

  • Latrasse D, Benhamed M, Henry Y, Domenichini S, Kim W, Zhou D-X, Delarue M (2008) The MYST histone acetyltransferases are essential for gametophyte development in Arabidopsis. BMC Plant Biol 8:121

    PubMed  PubMed Central  Google Scholar 

  • Lauss K, Wardenaar R, Oka R, van Hulten MHA, Guryev V, Keurentjes JJB, Stam M, Johannes F (2018) Parental DNA methylation states are associated with heterosis in epigenetic hybrids. Plant Physiol 176:1627–1645

    PubMed  CAS  Google Scholar 

  • Lee HG, Seo PJ (2019) MYB96 recruits the HDA15 protein to suppress negative regulators of ABA signaling in Arabidopsis. Nat Commun 10:1–14

    Google Scholar 

  • Lei B, Berger F (2019) H2A variants in Arabidopsis: versatile regulators of genome activity. Plant Commun 100015

  • Li Q, Eichten SR, Hermanson PJ, Zaunbrecher VM, Song J, Wendt J, Rosenbaum H, Madzima TF, Sloan AE, Huang J, Burgess DL, Richmond TA, McGinnis KM, Meeley RB, Danilevskaya ON, Vaughn MW, Kaeppler SM, Jeddeloh JA, Springer NM (2014) Genetic perturbation of the maize methylome. Plant Cell 26:4602–4616

    PubMed  PubMed Central  Google Scholar 

  • Li Q, Song J, West PT, Zynda G, Eichten SR, Vaughn MW, Springer NM (2015a) Examining the causes and consequences of context-specific differential DNA methylation in maize. Plant Physiol 168:1262–1274

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li Y, Mukherjee I, Thum KE, Tanurdzic M, Katari MS, Obertello M, Edwards MB, McCombie WR, Martienssen RA, Coruzzi GM (2015b) The histone methyltransferase SDG8 mediates the epigenetic modification of light and carbon responsive genes in plants. Genome Biol 16:79

    PubMed  PubMed Central  Google Scholar 

  • Li S, Lin YCJ, Wang P, Zhang B, Li M, Chen S, Shi R, Tunlaya-Anukit S, Liu X, Wang Z, Dai X, Yu J, Zhou C, Liu B, Wang JP, Chiang VL, Li W (2019) The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in Populus trichocarpa. Plant Cell 31:663–686

    PubMed  CAS  Google Scholar 

  • Lisch D (2013) How important are transposons for plant evolution? Nat Rev Genet 14:49–61

    PubMed  CAS  Google Scholar 

  • Liu X, Chen CY, Wang KC, Luo M, Tai R, Yuan L, Zhao M, Yang S, Tian G, Cui Y, Hsieh HL, Wu K (2013) PHYTOCHROME INTERACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings. Plant Cell 25:1258–1273

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liu X, Yang S, Zhao M, Luo M, Yu CW, Chen CY, Tai R, Wu K (2014) Transcriptional repression by histone deacetylases in plants. Mol Plant 7:764–772

    PubMed  CAS  Google Scholar 

  • López Sánchez A, Stassen JH, Furci L, Smith LM, Ton J (2016) The role of DNA (de) methylation in immune responsiveness of Arabidopsis. Plant J 88:361–374

    PubMed  PubMed Central  Google Scholar 

  • Lu F, Li G, Cui X, Liu C, Wang XJ, Cao X (2008) Comparative analysis of JmjC domain-containing proteins reveals the potential histone demethylases in Arabidopsis and rice. J Integr Plant Biol 50:886–896

    PubMed  CAS  Google Scholar 

  • Lu F, Cui X, Zhang S, Liu C, Cao X (2010) JMJ14 is an H3K4 demethylase regulating flowering time in Arabidopsis. Cell Res 20:387–390

    PubMed  Google Scholar 

  • Lu F, Cui X, Zhang S, Jenuwein T, Cao X (2011) Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nat Genet 43:715–719

    PubMed  CAS  Google Scholar 

  • Luna E, Bruce TJ, Roberts MR, Flors V, Ton J (2012) Next-generation systemic acquired resistance. Plant Physiol 158:844–853

    PubMed  CAS  Google Scholar 

  • Luo M, Wang YY, Liu X, Yang S, Lu Q, Cui Y, Wu K (2012) HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. J Exp Bot 6:3297–3306

    Google Scholar 

  • Luo M, Hung F-Y, Yang S, Liu X, Wu K (2014) Histone lysine demethylases and their functions in plants. Plant Mol Biol Report 32:558–565

    CAS  Google Scholar 

  • Mahrez W, Arellano MST, Moreno-Romero J, Nakamura M, Shu H, Nanni P, Köhler C, Gruissem W, Hennig L (2016) H3K36ac is an evolutionary conserved plant histone modification that marks active genes. Plant Physiol 170:1566–1577

    PubMed  CAS  PubMed Central  Google Scholar 

  • Malik HS, Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Mol Biol 10:882–891

    CAS  Google Scholar 

  • Manning K, Tör M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952

    PubMed  CAS  Google Scholar 

  • Martienssen RA, Colot V (2001) DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science 293:1070–1074

    PubMed  CAS  Google Scholar 

  • Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461:1135–1138

    PubMed  CAS  Google Scholar 

  • Mauch-Mani B, Baccelli I, Luna E, Flors V (2017) Defense priming: an adaptive part of induced resistance. Annu Rev Plant Biol 68:485–512

    CAS  PubMed  Google Scholar 

  • Meng D, Dubin M, Zhang P, Osborne EJ, Stegle O, Clark RM, Nordborg M (2016) Limited contribution of DNA methylation variation to expression regulation in Arabidopsis thaliana. PLoS Genet:12

  • Migicovsky Z, Yao Y, Kovalchuk I (2014) Transgenerational phenotypic and epigenetic changes in response to heat stress in Arabidopsis thaliana. Plant Signal Behav 9:e27971

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274

    PubMed  CAS  Google Scholar 

  • Morales-Ruiz T, Ortega-Galisteo AP, Ponferrada-Marín MI, Martínez-Macías MI, Ariza RR, Roldán-Arjona T (2006) Demeter and repressor of silencing 1 encode 5-methylcytosine DNA glycosylases. Proc Natl Acad Sci U S A 103:6853–6858

    PubMed  CAS  PubMed Central  Google Scholar 

  • Naumann K, Fischer A, Hofmann I, Krauss V, Phalke S, Irmler K, Hause G, Aurich AC, Dorn R, Jenuwein T, Reuter G (2005) Pivotal role of AtSUVH2 in heterochromatic histone methylation and gene silencing in Arabidopsis. EMBO J 24:1418–1429

    PubMed  CAS  PubMed Central  Google Scholar 

  • Navarro L, Jay F, Nomura K, He SY, Voinnet O (2008) Suppression of the microRNA pathway by bacterial effector proteins. Science 321:964–967

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nguyen HM, Sako K, Matsui A, Ueda M, Tanaka M, Ito A, Nishino N, Yoshida M, Seki M (2018) Transcriptomic analysis of Arabidopsis thaliana plants treated with the Ky-9 and Ky-72 histone deacetylase inhibitors. Plant Signal Behav 13:e1448333

    PubMed  PubMed Central  Google Scholar 

  • Niederhuth CE, Schmitz RJ (2017) Putting DNA methylation in context: from genomes to gene expression in plants. BBA-Gene Regul Mech 1860:149–156

    CAS  Google Scholar 

  • Niu L, Lu F, Pei Y, Liu C, Cao X (2007) Regulation of flowering time by the protein arginine methyltransferase AtPRMT10. EMBO Rep 8:1190–1195

    PubMed  CAS  PubMed Central  Google Scholar 

  • Niu L, Zhang Y, Pei Y, Liu C, Cao X (2008) Redundant requirement for a pair of PROTEIN ARGININE METHYLTRANSFERASE4 homologs for the proper regulation of Arabidopsis flowering time. Plant Physiol 148:490–503

    PubMed  CAS  PubMed Central  Google Scholar 

  • Noh B, Lee SH, Kim HJ, Yi G, Shin EA, Lee M, Jung KJ, Doyle MR, Amasino RM, Noh YS (2004) Divergent roles of a pair of homologous jumonji/zinc-finger–class transcription factor proteins in the regulation of Arabidopsis flowering time. Plant Cell 16:2601–2613

    PubMed  CAS  PubMed Central  Google Scholar 

  • Okada T, Endo M, Singh MB, Bhalla PL (2005) Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3. Plant J 44:557–568

    PubMed  CAS  Google Scholar 

  • Ong-Abdullah M, Ordway JM, Jiang N, Ooi SE, Kok SY, Sarpan N, Azimi N, Hashim AT, Ishak Z, Rosli SK, Malike FA, Bakar NAA, Marjuni M, Abdullah N, Yaakub Z, Amiruddin MD, Nookiah R, Singh R, Low ETL, Chan KL, Azizi N, Smith SW, Bacher B, Budiman MA, van Brunt A, Wischmeyer C, Beil M, Hogan M, Lakey N, Lim CC, Arulandoo X, Wong CK, Choo CN, Wong WC, Kwan YY, Alwee SSRS, Sambanthamurthi R, Martienssen RA (2015) Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525:533–537

    PubMed  CAS  PubMed Central  Google Scholar 

  • Paaby AB, Rockman MV (2014) Cryptic genetic variation: evolution’s hidden substrate Nat. Rev Gen Therm 15:247–258

    CAS  Google Scholar 

  • Paixão JFR et al (2019) Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a histone acetyltransferase. Sci Rep 9:1–9

    Google Scholar 

  • Palma K et al (2010) Autoimmunity in Arabidopsis acd11 is mediated by epigenetic regulation of an immune receptor. PLoS Pathog:6

  • Panda K, Slotkin RK (2013) Proposed mechanism for the initiation of transposable element silencing by the RDR6-directed DNA methylation pathway. Plant Signal Behav 8:116–131

    Google Scholar 

  • Pandey R, Müller A, Napoli CA, Selinger DA, Pikaard CS, Richards EJ, Bender J, Mount DW, Jorgensen RA (2002) Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res 30:5036–5055

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pandey MK et al (2016) Emerging genomic tools for legume breeding: current status and future prospects. Front Plant Sci 7:455

    PubMed  PubMed Central  Google Scholar 

  • Papaefthimiou D, Tsaftaris A (2012) Characterization of a drought inducible trithorax-like H3K4 methyltransferase from barley. Biol Plant 56:683–692

    CAS  Google Scholar 

  • Papikian A, Liu W, Gallego-Bartolomé J, Jacobsen SE (2019) Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nat Commun 10:1–11

    Google Scholar 

  • Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V (2013) Primed plants do not forget. Environ Exp Bot 94:46–56

    CAS  Google Scholar 

  • Patanun O et al (2017) The histone deacetylase inhibitor suberoylanilide hydroxamic acid alleviates salinity stress in cassava. Front Plant Sci 7:2039

    PubMed  PubMed Central  Google Scholar 

  • Paul A, Dasgupta P, Roy D, Chaudhuri S (2017) Comparative analysis of histone modifications and DNA methylation at OsBZ8 locus under salinity stress in IR64 and Nonabokra rice varieties. Plant Mol Biol 95:63–88

    PubMed  CAS  Google Scholar 

  • Pérez-Hormaeche J, Potet F, Beauclair L, Le Masson I, Courtial B, Bouché N, Lucas H (2008) Invasion of the Arabidopsis genome by the tobacco retrotransposon Tnt1 is controlled by reversible transcriptional gene silencing. Plant Physiol 147:1264–1278

    PubMed  PubMed Central  Google Scholar 

  • Perrella G, Lopez-Vernaza MA, Carr C, Sani E, Gosselé V, Verduyn C, Kellermeier F, Hannah MA, Amtmann A (2013) Histone deacetylase complex1 expression level titrates plant growth and abscisic acid sensitivity in Arabidopsis. Plant Cell 25:3491–3505

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pien S, Fleury D, Mylne JS, Crevillen P, Inzé D, Avramova Z, Dean C, Grossniklaus U (2008) ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 trimethylation. Plant Cell 20:580–588

    PubMed  CAS  PubMed Central  Google Scholar 

  • Quadrana L et al (2014) Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nat Commun 5:1–11

    Google Scholar 

  • Raju SKK, Shao MR, Sanchez R, Xu YZ, Sandhu A, Graef G, Mackenzie S (2018) An epigenetic breeding system in soybean for increased yield and stability. Plant Biotechnol J 16:1836–1847

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reinders J, Wulff BBH, Mirouze M, Mari-Ordonez A, Dapp M, Rozhon W, Bucher E, Theiler G, Paszkowski J (2009) Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev 23:939–950

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rigal M, Becker C, Pélissier T, Pogorelcnik R, Devos J, Ikeda Y, Weigel D, Mathieu O (2016) Epigenome confrontation triggers immediate reprogramming of DNA methylation and transposon silencing in Arabidopsis thaliana F1 epihybrids. Proc Natl Acad Sci U S A 113:E2083–E2092

    PubMed  CAS  PubMed Central  Google Scholar 

  • Roberts D (1983) Acquired resistance to tobacco mosaic virus transmitted to the progeny of hypersensitive tobacco. Virology 124:161–163

    PubMed  CAS  Google Scholar 

  • Rodrigues JA, Zilberman D (2015) Evolution and function of genomic imprinting in plants. Genes Dev 29:2517–2531

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rodrigues JA, Ruan R, Nishimura T, Sharma MK, Sharma R, Ronald PC, Fischer RL, Zilberman D (2013) Imprinted expression of genes and small RNA is associated with localized hypomethylation of the maternal genome in rice endosperm. Proc Natl Acad Sci U S A 110:7934–7939

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rodríguez López CM, Wilkinson MJ (2015) Epi-fingerprinting and epi-interventions for improved crop production and food quality. Front Plant Sci 6:397

    PubMed  PubMed Central  Google Scholar 

  • Ronemus MJ, Galbiati M, Ticknor C, Chen J, Dellaporta SL (1996) Demethylation-induced developmental pleiotropy in Arabidopsis. Science 273:654–657

    PubMed  CAS  Google Scholar 

  • Rusk N (2013) CRISPRs and epigenome editing. Nat Methods 11:28

    Google Scholar 

  • Rutowicz K, Puzio M, Halibart-Puzio J, Lirski M, Kotliński M, Kroteń MA, Knizewski L, Lange B, Muszewska A, Śniegowska-Świerk K, Kościelniak J, Iwanicka-Nowicka R, Buza K, Janowiak F, Żmuda K, Jõesaar I, Laskowska-Kaszub K, Fogtman A, Kollist H, Zielenkiewicz P, Tiuryn J, Siedlecki P, Swiezewski S, Ginalski K, Koblowska M, Archacki R, Wilczynski B, Rapacz M, Jerzmanowski A (2015) A specialized histone H1 variant is required for adaptive responses to complex abiotic stress and related DNA methylation in Arabidopsis. Plant Physiol 169:2080–2101

    PubMed  CAS  PubMed Central  Google Scholar 

  • Saleh A, Alvarez-Venegas R, Yilmaz M, le O, Hou G, Sadder M, al-Abdallat A, Xia Y, Lu G, Ladunga I, Avramova Z (2008) The highly similar Arabidopsis homologs of trithorax ATX1 and ATX2 encode proteins with divergent biochemical functions. Plant Cell 20:568–579

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sani E, Herzyk P, Perrella G, Colot V, Amtmann A (2013) Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biol 14:R59

    PubMed  PubMed Central  Google Scholar 

  • Sartor RC, Noshay J, Springer NM, Briggs SP (2019) Identification of the expressome by machine learning on omics data. Proc Natl Acad Sci U S A 116:18119–18125

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sawicka A, Seiser C (2014) Sensing core histone phosphorylation—a matter of perfect timing. BBA-Gene Regul Mech 1839:711–718

    CAS  Google Scholar 

  • Saze H, Shiraishi A, Miura A, Kakutani T (2008) Control of genic DNA methylation by a jmjC domain-containing protein in Arabidopsis thaliana. Science 319:462–465

    PubMed  CAS  Google Scholar 

  • Schmitz RJ, Sung S, Amasino RM (2008) Histone arginine methylation is required for vernalization-induced epigenetic silencing of FLC in winter-annual Arabidopsis thaliana. Proc Natl Acad Sci U S A 105:411–416

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schmitz RJ, Schultz MD, Urich MA, Nery JR, Pelizzola M, Libiger O, Alix A, McCosh RB, Chen H, Schork NJ, Ecker JR (2013) Patterns of population epigenomic diversity. Nature 495:193–198

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schubert D, Primavesi L, Bishopp A, Roberts G, Doonan J, Jenuwein T, Goodrich J (2006) Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27. EMBO J 25:4638–4649

    PubMed  CAS  PubMed Central  Google Scholar 

  • Secco D, Wang C, Shou H, Schultz MD, Chiarenza S, Nussaume L, Ecker JR, Whelan J, Lister R (2015) Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. Elife 4:e09343

    PubMed Central  Google Scholar 

  • Servet C, Conde e Silva N, Zhou D-X (2010) Histone acetyltransferase AtGCN5/HAG1 is a versatile regulator of developmental and inducible gene expression in Arabidopsis. Mol Plant 3:670–677

    PubMed  CAS  Google Scholar 

  • Seymour DK, Koenig D, Hagmann J, Becker C, Weigel D (2014) Evolution of DNA methylation patterns in the Brassicaceae is driven by differences in genome organization. PLoS Genet 10

  • Shafiq S, Berr A, Shen WH (2014) Combinatorial functions of diverse histone methylations in Arabidopsis thaliana flowering time regulation. New Phytol 201:312–322

    PubMed  CAS  Google Scholar 

  • Shan X, Wang X, Yang G, Wu Y, Su S, Li S, Liu H, Yuan Y (2013) Analysis of the DNA methylation of maize (Zea mays L.) in response to cold stress based on methylation-sensitive amplified polymorphisms. J Plant Biol 56:32–38

    CAS  Google Scholar 

  • Shen H, He H, Li J, Chen W, Wang X, Guo L, Peng Z, He G, Zhong S, Qi Y, Terzaghi W, Deng XW (2012) Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 24:875–892

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953

    PubMed  CAS  Google Scholar 

  • Shivaprasad PV, Dunn RM, Santos BA, Bassett A, Baulcombe DC (2012) Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. EMBO J 31:257–266

    PubMed  CAS  Google Scholar 

  • Sigman MJ, Slotkin RK (2016) The first rule of plant transposable element silencing: location, location, location. Plant Cell 28:304–313

    PubMed  CAS  PubMed Central  Google Scholar 

  • Singh P, Yekondi S, Chen P-W, Tsai C-H, Yu C-W, Wu K, Zimmerli L (2014) Environmental history modulates Arabidopsis pattern-triggered immunity in a HISTONE ACETYLTRANSFERASE1–dependent manner. Plant Cell 26:2676–2688

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sinha P, Singh VK, Saxena RK, Kale SM, Li Y, Garg V, Meifang T, Khan AW, Kim KD, Chitikineni A, Saxena KB, Sameer Kumar CV, Liu X, Xu X, Jackson S, Powell W, Nevo E, Searle IR, Lodha M, Varshney RK (2020) Genome-wide analysis of epigenetic and transcriptional changes associated with heterosis in pigeonpea. Plant Biotechnol J 18:1697–1710

    PubMed  CAS  PubMed Central  Google Scholar 

  • Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843

    PubMed  CAS  Google Scholar 

  • Slotkin RK, Vaughn M, Borges F, Tanurdžić M, Becker JD, Feijó JA, Martienssen RA (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461–472

    PubMed  CAS  PubMed Central  Google Scholar 

  • Smýkal P, Nelson MN, Berger JD, Von Wettberg EJ (2018) The impact of genetic changes during crop domestication. Agronomy 8:119

    Google Scholar 

  • Song J, Henry HA, Tian L (2019) Brachypodium histone deacetylase BdHD1 positively regulates ABA and drought stress responses. Plant Sci 283:355–365

    PubMed  CAS  Google Scholar 

  • Springer NM (2013) Epigenetics and crop improvement. Trends Genet 29:241–247

    PubMed  CAS  Google Scholar 

  • Springer NM, McGinnis KM (2015) Paramutation in evolution, population genetics and breeding. In: Seminars in cell & Develop. Biol. 33–38

  • Springer NM, Schmitz RJ (2017) Exploiting induced and natural epigenetic variation for crop improvement. Nat Rev Genet 18:563–575

    PubMed  CAS  Google Scholar 

  • Stockinger EJ, Mao Y, Regier MK, Triezenberg SJ, Thomashow MF (2001) Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res 29:1524–1533

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stoddard CI et al (2019) A nucleosome bridging mechanism for activation of a maintenance DNA methyltransferase. Mol Cell 73:73–83. e76

    PubMed  CAS  Google Scholar 

  • Stroud H, Otero S, Desvoyes B, Ramírez-Parra E, Jacobsen SE, Gutierrez C (2012) Genome-wide analysis of histone H3. 1 and H3. 3 variants in Arabidopsis thaliana. Proc Natl Acad Sci USA 109:5370–5375

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sui P, Jin J, Ye S, Mu C, Gao J, Feng H, Shen WH, Yu Y, Dong A (2012) H3K36 methylation is critical for brassinosteroid-regulated plant growth and development in rice. Plant J 70:340–347

    PubMed  CAS  Google Scholar 

  • Sun Q, Zhou D-X (2008) Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development. Proc Natl Acad Sci U S A 105:13679–13684

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sura W, Kabza M, Karlowski WM, Bieluszewski T, Kus-Slowinska M, Pawełoszek Ł, Sadowski J, Ziolkowski PA (2017) Dual role of the histone variant H2A. Z in transcriptional regulation of stress-response genes. Plant Cell 29:791–807

    PubMed  CAS  PubMed Central  Google Scholar 

  • Talbert PB, Ahmad K, Almouzni G, Ausió J, Berger F, Bhalla PL, Bonner WM, Cande W, Chadwick BP, Chan SWL, Cross GAM, Cui L, Dimitrov SI, Doenecke D, Eirin-López JM, Gorovsky MA, Hake SB, Hamkalo BA, Holec S, Jacobsen SE, Kamieniarz K, Khochbin S, Ladurner AG, Landsman D, Latham JA, Loppin B, Malik HS, Marzluff WF, Pehrson JR, Postberg J, Schneider R, Singh MB, Smith M, Thompson E, Torres-Padilla ME, Tremethick D, Turner BM, Waterborg J, Wollmann H, Yelagandula R, Zhu B, Henikoff S (2012) A unified phylogeny-based nomenclature for histone variants. Epigenetics Chromatin 5:7

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tamada Y, Yun J-Y, chul Woo S, Amasino RM (2009) ARABIDOPSIS TRITHORAX-RELATED7 is required for methylation of lysine 4 of histone H3 and for transcriptional activation of FLOWERING LOCUS C. Plant Cell 21:3257–3269

    PubMed  CAS  PubMed Central  Google Scholar 

  • Taudt A, Colomé-Tatché M, Johannes F (2016) Genetic sources of population epigenomic variation. Nat Rev Genet 17:319–332

    PubMed  CAS  Google Scholar 

  • Thieme M, Lanciano S, Balzergue S, Daccord N, Mirouze M, Bucher E (2017) Inhibition of RNA polymerase II allows controlled mobilisation of retrotransposons for plant breeding. Genome Biol 18:134

    PubMed  PubMed Central  Google Scholar 

  • Thorstensen T, Grini PE, Aalen RB (2011) SET domain proteins in plant development. BBA-Gene Regul Mech 1809:407–420

    CAS  Google Scholar 

  • Tsukada Y-i, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–816

    PubMed  CAS  Google Scholar 

  • Ueda M, Seki M (2020) Histone modifications form epigenetic regulatory networks to regulate abiotic stress response. Plant Physiol 182:15–26

    PubMed  CAS  Google Scholar 

  • Ueda M, Matsui A, Tanaka M, Nakamura T, Abe T, Sako K, Sasaki T, Kim JM, Ito A, Nishino N, Shimada H, Yoshida M, Seki M (2017) The distinct roles of class I and II RPD3-like histone deacetylases in salinity stress response. Plant Physiol 175:1760–1773

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ueda M, Matsui A, Nakamura T, Abe T, Sunaoshi Y, Shimada H, Seki M (2018) Versatility of HDA19-deficiency in increasing the tolerance of Arabidopsis to different environmental stresses. Plant Signal Behav 13:e1475808

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ueda M, Matsui A, Tanaka M, Ishida J, Seki M (2019) Transcriptome analysis of the hierarchical response of HDAC proteins that respond in an antagonistic manner to salinity stress. Front Plant Sci 10:1323

    PubMed  PubMed Central  Google Scholar 

  • Varotto S, Tani E, Abraham E, Krugman T, Kapazoglou A, Melzer R, Radanović A, Miladinović D (2020) Epigenetics: possible applications in climate-smart crop breeding. J Exp Bot 71:5223–5236

    PubMed  PubMed Central  Google Scholar 

  • Wang C, Gao F, Wu J, Dai J, Wei C, Li Y (2010) Arabidopsis putative deacetylase AtSRT2 regulates basal defense by suppressing PAD4, EDS5 and SID2 expression. Plant Cell Physiol 51:1291–1299

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang W-S, Pan YJ, Zhao XQ, Dwivedi D, Zhu LH, Ali J, Fu BY, Li ZK (2011) Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot 62:1951–1960

    PubMed  CAS  Google Scholar 

  • Wendte JM et al (2019) Epimutations are associated with CHROMOMETHYLASE 3-induced de novo DNA methylation. Elife:8

  • Wibowo A, Becker C, Marconi G, Durr J, Price J, Hagmann J, Papareddy R, Putra H, Kageyama J, Becker J, Weigel D, Gutierrez-Marcos J (2016) Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. Elife 5:e13546

    PubMed  PubMed Central  Google Scholar 

  • Wollmann H, Stroud H, Yelagandula R, Tarutani Y, Jiang D, Jing L, Jamge B, Takeuchi H, Holec S, Nie X, Kakutani T, Jacobsen SE, Berger F (2017) The histone H3 variant H3. 3 regulates gene body DNA methylation in Arabidopsis thaliana. Genome Biol 18:94

    PubMed  PubMed Central  Google Scholar 

  • Wu SC, Zhang Y (2010) Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 11:607–620

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wu K et al (2020) Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science:367

  • Xiao J, Zhang H, Xing L, Xu S, Liu H, Chong K, Xu Y (2013) Requirement of histone acetyltransferases HAM1 and HAM2 for epigenetic modification of FLC in regulating flowering in Arabidopsis. J Plant Physiol 170:444–451

    PubMed  CAS  Google Scholar 

  • Xu C-R, Liu C, Wang Y-L, Li L-C, Chen W-Q, Xu Z-H, Bai S-N (2005) Histone acetylation affects expression of cellular patterning genes in the Arabidopsis root epidermis. Proc Natl Acad Sci U S A 102:14469–14474

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xu L, Zhao Z, Dong A, Soubigou-Taconnat L, Renou J-P, Steinmetz A, Shen W-H (2008) Di-and tri-but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Mol Cell Biol 28:1348–1360

    PubMed  CAS  Google Scholar 

  • Xu J, Tanino KK, Horner KN, Robinson SJ (2016) Quantitative trait variation is revealed in a novel hypomethylated population of woodland strawberry (Fragaria vesca). BMC Plant Biol 16:240

    PubMed  PubMed Central  Google Scholar 

  • Yang H et al (2012a) A companion cell–dominant and developmentally regulated H3K4 demethylase controls flowering time in Arabidopsis via the repression of FLC expression. PLoS Genet:8

  • Yang H, Mo H, Fan D, Cao Y, Cui S, Ma L (2012b) Overexpression of a histone H3K4 demethylase, JMJ15, accelerates flowering time in Arabidopsis. Plant Cell Rep 31:1297–1308

    PubMed  CAS  Google Scholar 

  • Yang H, Howard M, Dean C (2014) Antagonistic roles for H3K36me3 and H3K27me3 in the cold-induced epigenetic switch at Arabidopsis FLC. Curr Biol 24:1793–1797

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yang X, Kundariya H, Xu YZ, Sandhu A, Yu J, Hutton SF, Zhang M, Mackenzie SA (2015) MutS HOMOLOG1-derived epigenetic breeding potential in tomato. Plant Physiol 168:222–232

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yang H, Howard M, Dean C (2016a) Physical coupling of activation and derepression activities to maintain an active transcriptional state at FLC. Proc Natl Acad Sci U S A 113:9369–9374

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yang H, Liu X, Xin M, du J, Hu Z, Peng HR, Rossi V, Sun Q, Ni Z, Yao Y (2016b) Genome-wide mapping of targets of maize histone deacetylase HDA101 reveals its function and regulatory mechanism during seed development. Plant Cell 28:629–645

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yelagandula R et al (2014) The histone variant H2A.W defines heterochromatin and promotes chromatin condensation in Arabidopsis. Cell 158:98–109

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yu X, Li L, Li L, Guo M, Chory J, Yin Y (2008) Modulation of brassinosteroid-regulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc Natl Acad Sci U S A 105:7618–7623

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yu A, Lepere G, Jay F, Wang J, Bapaume L, Wang Y, Abraham AL, Penterman J, Fischer RL, Voinnet O, Navarro L (2013) Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc Natl Acad Sci U S A 110:2389–2394

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zemach A, Kim MY, Silva P, Rodrigues JA, Dotson B, Brooks MD, Zilberman D (2010) Local DNA hypomethylation activates genes in rice endosperm. Proc Natl Acad Sci U S A 107:18729–18734

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zemach A, Kim MY, Hsieh PH, Coleman-Derr D, Eshed-Williams L, Thao K, Harmer SL, Zilberman D (2013) The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153:193–205

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang L, Cheng Z, Qin R, Qiu Y, Wang JL, Cui X, Gu L, Zhang X, Guo X, Wang D, Jiang L, Wu CY, Wang H, Cao X, Wan J (2012) Identification and characterization of an epi-allele of FIE1 reveals a regulatory linkage between two epigenetic marks in rice. Plant Cell 24:4407–4421

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang YY, Fischer M, Colot V, Bossdorf O (2013) Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytol 197:314–322

    PubMed  CAS  Google Scholar 

  • Zhang Y-Y, Latzel V, Fischer M, Bossdorf O (2018) Understanding the evolutionary potential of epigenetic variation: a comparison of heritable phenotypic variation in epiRILs, RILs, and natural ecotypes of Arabidopsis thaliana. Heredity 121:257–265

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao J et al (2015a) Expression and functional analysis of the plant-specific histone deacetylase HDT701 in rice. Front Plant Sci 5:764

    PubMed  PubMed Central  Google Scholar 

  • Zhao M, Yang S, Liu X, Wu K (2015b) Arabidopsis histone demethylases LDL1 and LDL2 control primary seed dormancy by regulating DELAY OF GERMINATION 1 and ABA signaling-related genes. Front Plant Sci 6:159

    PubMed  PubMed Central  Google Scholar 

  • Zhao J, Li M, Gu D, Liu X, Zhang J, Wu K, Zhang X, Teixeira da Silva JA, Duan J (2016) Involvement of rice histone deacetylase HDA705 in seed germination and in response to ABA and abiotic stresses. Biochem Biophys Res Commun 470:439–444

    PubMed  CAS  Google Scholar 

  • Zheng J, Chen F, Wang Z, Cao H, Li X, Deng X, Soppe WJJ, Li Y, Liu Y (2012) A novel role for histone methyltransferase KYP/SUVH4 in the control of Arabidopsis primary seed dormancy. New Phytol 193:605–616

    PubMed  CAS  Google Scholar 

  • Zheng Y, Ding Y, Sun X, Xie S, Wang D, Liu X, Su L, Wei W, Pan L, Zhou DX (2016) Histone deacetylase HDA9 negatively regulates salt and drought stress responsiveness in Arabidopsis. J Exp Bot 67:1703–1713

    PubMed  CAS  Google Scholar 

  • Zheng X et al (2017) Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant’s adaptation to drought condition. Sci Rep 7:1–13

    Google Scholar 

  • Zheng M et al (2019) Histone acetyltransferase GCN 5 contributes to cell wall integrity and salt stress tolerance by altering the expression of cellulose synthesis genes. Plant J 97:587–602

    PubMed  CAS  Google Scholar 

  • Zhong S, Fei Z, Chen YR, Zheng Y, Huang M, Vrebalov J, McQuinn R, Gapper N, Liu B, Xiang J, Shao Y, Giovannoni JJ (2013) Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotechnol 31:154–159

    PubMed  CAS  Google Scholar 

  • Zhou D-X, Hu Y (2010) Regulatory function of histone modifications in controlling rice gene expression and plant growth. Rice 3:103–111

    Google Scholar 

  • Zhou C, Labbe H, Sridha S, Wang L, Tian L, Latoszek-Green M, Yang Z, Brown D, Miki B, Wu K (2004) Expression and function of HD2-type histone deacetylases in Arabidopsis development. Plant J 38:715–724

    PubMed  CAS  Google Scholar 

  • Zhou C, Zhang L, Duan J, Miki B, Wu K (2005) HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell 17:1196–1204

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

RKV is thankful to the Science & Engineering Research Board (SERB) of the Department of Science & Technology (DST), Government of India, for providing the J C Bose National Fellowship (SB/S9/Z-13/2019). HK acknowledges the SERB of DST, Government of India, for providing the SERB Women Excellence Award (SB/WEA-01/2017). RS acknowledges the Neustadt-Sarkeys Distinguished Professorship of Oklahoma State University.

Funding

This work was undertaken as part of the CGIAR Research Program on Grain Legumes & Dryland Cereals (CRP-GLDC). ICRISAT is a member of CGIAR Research Consortium.

Author information

Authors and Affiliations

Authors

Contributions

Conception or design of work: RKV, RS, CN, and GA; writing: HK, AR, DC, PS, VG, VKS, GBP, MKP, HTN, BG, RS, CN, and RKV; editing: RKV, RS, CN, and GA.

Corresponding authors

Correspondence to Ramanjulu Sunkar, Chad E Niederhuth or Rajeev K Varshney.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

All authors have their consent to participate.

Consent for publication

All authors have their consent to publish this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, G., Kudapa, H., Ramalingam, A. et al. Epigenetics and epigenomics: underlying mechanisms, relevance, and implications in crop improvement. Funct Integr Genomics 20, 739–761 (2020). https://doi.org/10.1007/s10142-020-00756-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-020-00756-7

Keywords

Navigation