Skip to main content
Log in

Fast induction of biosynthetic polysaccharide genes lpxA, lpxE, and rkpI of Rhizobium sp. strain PRF 81 by common bean seed exudates is indicative of a key role in symbiosis

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Rhizobial surface polysaccharides (SPS) are, together with nodulation (Nod) factors, recognized as key molecules for establishment of rhizobia–legume symbiosis. In Rhizobium tropici, an important nitrogen-fixing symbiont of common bean (Phaseolus vulgaris L.), molecular structures and symbiotic roles of the SPS are poorly understood. In this study, Rhizobium sp. strain PRF 81 genes, belonging to the R. tropici group, were investigated: lpxA and lpxE, involved in biosynthesis and modification of the lipid-A anchor of lipopolysaccharide (LPS), and rkpI, involved in synthesis of a lipid carrier required for production of capsular polysaccharides (KPS). Reverse transcription quantitative PCR (RT-qPCR) analysis revealed, for the first time, that inducers released from common bean seeds strongly stimulated expression of all three SPS genes. When PRF 81 cells were grown for 48 h in the presence of seed exudates, twofold increases (p < 0.05) in the transcription levels of lpxE, lpxA, and rkpI genes were observed. However, higher increases (p < 0.05) in transcription rates, about 50-fold for lpxE and about 30-fold for lpxA and rkpI, were observed after only 5 min of incubation with common bean seed exudates. Evolutionary analyses revealed that lpxA and lpxE of PRF81 and of the type strain of R. tropici CIAT899Tclustered with orthologous Rhizobium radiobacter and were more related to R. etli and Rhizobium leguminosarum, while rkpI was closer to the Sinorhizobium sp. group. Upregulation of lpxE, lpxA, and rkpI genes suggests that seed exudates can modulate production of SPS of Rhizobium sp. PRF81, leading to cell wall changes necessary for symbiosis establishment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Aziz R, Bartels D, Best A, DeJongh M, Disz T, Edwards R, Formsma K, Gerdes S, Glass E, Kubal M (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75

    Article  Google Scholar 

  • Becker A, Bergès H, Krol E, Bruand C, Rüberg S, Capela D, Lauber E, Meilhoc E, Ampe F, de Bruijn FJ (2004) Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. Mol Plant-Microbe Interact 17:292–303. doi:10.1094/MPMI.2004.17.3.292

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Fraysse N, Sharypova L (2005) Recent advances in studies on structure and symbiosis-related function of rhizobial K-antigens and lipopolysaccharides. Mol Plant-Microbe Interact 18:899–905. doi:10.1094/mpmi-18-0899

    Article  PubMed  CAS  Google Scholar 

  • Beringer J (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198. doi:10.1099/00221287-84-1-188

    Article  PubMed  CAS  Google Scholar 

  • Broughton W, Hanin M, Relić B, Kopciñska J, Golinowski W, Şimşek Ş, Ojanen-Reuhs T, Reuhs B, Marie C, Kobayashi H (2006) Flavonoid-inducible modifications to rhamnan O antigens are necessary for Rhizobium sp. strain NGR234–legume symbioses. J Bacteriol 188:3654–3663. doi:10.1128/JB.188.10.3654-3663.2006

    Article  PubMed  CAS  Google Scholar 

  • Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365. doi:10.1111/j.1365-2672.2007.03366.x

    Article  PubMed  CAS  Google Scholar 

  • D’Haeze W, Holsters M (2004) Surface polysaccharides enable bacteria to evade plant immunity. Trends Microbiol 12:555–561. doi:10.1016/j.tim.2004.10.009

    Article  PubMed  Google Scholar 

  • Downie JA (2010) The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 34:150–170. doi:10.1111/j.1574-6976.2009.00205.x

    Article  PubMed  CAS  Google Scholar 

  • Farrell RE Jr (1998) RNA methodologies: a laboratory guide for isolation and characterization. Academic, San Diego, p 533

    Google Scholar 

  • Fauvart M, Michiels J (2008) Rhizobial secreted proteins as determinants of host specificity in the rhizobium–legume symbiosis. FEMS Microbiol Lett 285:1–9. doi:10.1111/j.1574-6968.2008.01254.x

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution:783–791

  • Ferguson BJ, Indrasumunar A, Hayashi S, Lin MH, Lin YH, Reid DE, Gresshoff PM (2010) Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol 52:61–76. doi:10.1111/j.1744-7909.2010.00899.x

    Article  PubMed  CAS  Google Scholar 

  • Fraysse N, Jabbouri S, Treilhou M, Couderc F, Poinsot V (2002) Symbiotic conditions induce structural modifications of Sinorhizobium sp. NGR234 surface polysaccharides. Glycobiology 12:741–748. doi:10.1093/glycob/cwf078

    Article  PubMed  CAS  Google Scholar 

  • Fraysse N, Couderc F, Poinsot V (2003) Surface polysaccharide involvement in establishing the rhizobium–legume symbiosis. Eur J Biochem 270:1365–1380. doi:10.1046/j.1432-1033.2003.03492.x

    Article  PubMed  CAS  Google Scholar 

  • Gil Serrano AM, Franco-Rodríguez G, González-Jiménez I, Tejero-Mateo P, Molina JM, Dobado J, Megías M, Romero MJ (1993) The structure and molecular mechanics calculations of the cyclic (1 → 2)-β-D-glucan secreted by Rhizobium tropici CIAT 899. J Mol Struct 301:211–226. doi:10.1016/0022-2860(93)80246-R

    Article  CAS  Google Scholar 

  • Gil-Serrano A, del Junco AS, Tejero-Mateo P, Megias M, Caviedes MA (1990) Structure of the extracellular polysaccharide secreted by Rhizobium leguminosarum var. phaseoli CIAT 899. Carbohydr Res 204:103–107. doi:10.1016/0008-6215(90)84025-p

    Article  PubMed  CAS  Google Scholar 

  • Gil-Serrano A, González-Jiménez I, Tejero-Mateo P, Megias M, Romero-Vazquez M (1994) Analysis of the lipid moiety of lipopolysaccharide from Rhizobium tropici CIAT899: identification of 29-hydroxytriacontanoic acid. J Bacteriol 176:2454–2457

    PubMed  CAS  Google Scholar 

  • Gil-Serrano AM, González-Jiménez I, Tejero Mateo P, Bernabé M, Jiménez-Barbero J, Megías M, Jesús Romero-Vázquez M (1995) Structural analysis of the O-antigen of the lipopolysaccharide of Rhizobium tropici CIAT899. Carbohydr Res 275:285–294. doi:10.1016/0008-6215(95)00178-v

    Article  PubMed  CAS  Google Scholar 

  • Grange L, Hungria M (2004) Genetic diversity of indigenous common bean (Phaseolus vulgaris) rhizobia in two Brazilian ecosystems. Soil Biol Biochem 36:1389–1398

    Article  CAS  Google Scholar 

  • Hungria M, Neves MCP (1987) Cultivar and Rhizobium strain effect on nitrogen fixation and transport in Phaseolus vulgaris L. Plant Soil 103:111–121. doi:10.1007/BF02370675

    Article  CAS  Google Scholar 

  • Hungria M, Joseph CM, Phillips DA (1991a) Anthocyanidins and flavonols, major nod gene inducers from seeds of a black-seeded common bean (Phaseolus vulgaris L.). Plant Physiol 97:751. doi:10.1104/pp.97.2.751

    Article  CAS  Google Scholar 

  • Hungria M, Joseph CM, Phillips DA (1991b) Rhizobium nod gene inducers exuded naturally from roots of common bean (Phaseolus vulgaris L.). Plant Physiol 97:759. doi:10.1104/pp.97.2.759

    Article  CAS  Google Scholar 

  • Hungria M, Johnston A, Phillips DA (1992) Effects of flavonoids released naturally from bean (Phaseolus vulgaris) on nodD-regulated gene transcription in Rhizobium leguminosarum bv. phaseoli. Mol Plant-Microbe Interact 5:199–203

    Article  PubMed  CAS  Google Scholar 

  • Hungria M, DdS A, Chueire LMO, Probanza A, Guttierrez-Mañero FJ, Megı́as M (2000) Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol Biochem 32:1515–1528. doi:10.1016/s0038-0717(00)00063-8

    Article  CAS  Google Scholar 

  • Hungria M, Campo RJ, Mendes IC (2003) Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. Biol Fertil Soils 39:88–93. doi:10.1007/s00374-003-0682-6

    Article  Google Scholar 

  • Ingram BO, Sohlenkamp C, Geiger O, Raetz CRH (2010) Altered lipid A structures and polymyxin hypersensitivity of Rhizobium etli mutants lacking the LpxE and LpxF phosphatases. Biochim Biophys Acta 1801:593–604. doi:10.1016/j.bbalip.2010.02.001

    Article  PubMed  CAS  Google Scholar 

  • Kannenberg EL, Carlson RW (2001) Lipid A and O-chain modifications cause Rhizobium lipopolysaccharides to become hydrophobic during bacteroid development. Mol Microbiol 39:379–392. doi:10.1046/j.1365-2958.2001.02225.x

    Article  PubMed  CAS  Google Scholar 

  • Karbarz MJ, Kalb SR, Cotter RJ, Raetz CRH (2003) Expression cloning and biochemical characterization of a Rhizobium leguminosarum lipid A 1-phosphatase. J Biol Chem 278:39269–39279. doi:10.1074/jbc.M305830200

    Article  PubMed  CAS  Google Scholar 

  • Karbarz MJ, Six DA, Raetz CRH (2009) Purification and characterization of the lipid A 1-phosphatase LpxE of Rhizobium leguminosarum. J Biol Chem 284:414–425. doi:10.1074/jbc.M808390200

    Article  PubMed  CAS  Google Scholar 

  • Kiss E, Reuhs BL, Kim JS, Kereszt A, Petrovics G, Putnoky P, Dusha I, Carlson RW, Kondorosi A (1997) The rkpGHI and -J genes are involved in capsular polysaccharide production by Rhizobium meliloti. J Bacteriol 179:2132–2140

    PubMed  CAS  Google Scholar 

  • Le Quéré AJ-L, Deakin WJ, Schmeisser C, Carlson RW, Streit WR, Broughton WJ, Forsberg LS (2006) Structural characterization of a K-antigen capsular polysaccharide essential for normal symbiotic infection in Rhizobium sp. NGR234. J Biol Chem 281:28981–28992. doi:10.1074/jbc.M513639200

    Article  PubMed  Google Scholar 

  • Margaret-Oliver I, Lei W, Parada M, Rodríguez-Carvajal MA, Crespo-Rivas JC, Hidalgo Á, Gil-Serrano A, Moreno J, Rodríguez-Navarro DN, Buendía-Clavería A (2012) Sinorhizobium fredii HH103 does not strictly require KPS and/or EPS to nodulate Glycyrrhiza uralensis, an indeterminate nodule-forming legume. Arch Microbiol 194:87–102. doi:10.1007/s00203-011-0729-2

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Romero E (2003) Diversity of RhizobiumPhaseolus vulgaris symbiosis: overview and perspectives. Plant Soil 252:11–23. doi:10.1023/A:1024199013926

    Article  CAS  Google Scholar 

  • Metzger LE IV, Raetz CRH (2010) An alternative route for UDP-diacylglucosamine hydrolysis in bacterial lipid A biosynthesis. Biochemistry 49:6715–6726. doi:10.1021/bi1008744

    Article  PubMed  CAS  Google Scholar 

  • Michiels J, Dombrecht B, Vermeiren N, Xi C, Luyten E, Vanderleyden J (1998) Phaseolus vulgaris is a non-selective host for nodulation. FEMS Microbiol Ecol 26:193–205. doi:10.1016/S0168-6496(98)00035-X

    Article  CAS  Google Scholar 

  • Noel KD, Duelli DM, Tao H, Brewin NJ (1996) Antigenic change in the lipopolysaccharide of Rhizobium etli CFN42 induced by exudates of Phaseolus vulgaris. Mol Plant-Microbe Interact 9:180–186

    Article  CAS  Google Scholar 

  • Noel KD, Box JM, Bonne VJ (2004) 2-O-Methylation of fucosyl residues of a rhizobial lipopolysaccharide is increased in response to host exudate and is eliminated in a symbiotically defective mutant. Appl Environ Microbiol 70:1537–1544. doi:10.1128/AEM.70.3.1537-1544.2004

    Article  PubMed  CAS  Google Scholar 

  • Oliveira LR, Marcelino FC, Barcellos FG, Rodrigues EP, Megías M, Hungria M (2010) The nodC, nodG, and glgX genes of Rhizobium tropici strain PRF 81. Funct Integr Genom 10:425–431. doi:10.1007/s10142-009-0151-x

    Article  CAS  Google Scholar 

  • Ormeño-Orrillo E, Menna P, Almeida LGP, Ollero FJ, Nicolás MF, Rodrigues EP, Nakatani AS, Batista JSS, Chueire LMO, Souza RC (2012) Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genom 13:735

    Article  Google Scholar 

  • Parada M, Vinardell JM, Ollero FJ, Hidalgo Á, Gutiérrez R, Buendía-Clavería AM, Lei W, Margaret I, López-Baena FJ, Gil-Serrano AM (2006) Sinorhizobium fredii HH103 mutants affected in capsular polysaccharide (KPS) are impaired for nodulation with soybean and Cajanus cajan. Mol Plant-Microbe Interact 19:43–52. doi:10.1094/MPMI-19-0043

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36. doi:10.1093/nar/30.9.e36

    Article  PubMed  Google Scholar 

  • Pinto FGS, Hungria M, Martins Mercante F (2007) Polyphasic characterization of Brazilian Rhizobium tropici strains effective in fixing N2 with common bean (Phaseolus vulgaris L.). Soil Biol Biochem 39:1851–1864. doi:10.1016/j.soilbio.2007.01.001

    Article  CAS  Google Scholar 

  • Pinto FGS, Chueire LMO, Vasconcelos ATR, Nicolás MF, Almeida LGP, Souza RC, Menna P, Barcellos FG, Megías M, Hungria M (2009) Novel genes related to nodulation, secretion systems, and surface structures revealed by a genome draft of Rhizobium tropici strain PRF 81. Funct Integr Genom 9:263–270. doi:10.1007/s10142-009-0109-z

    Article  CAS  Google Scholar 

  • Que NLS, Ribeiro AA, Raetz CRH (2000) Two-dimensional NMR spectroscopy and structures of six lipid A species from Rhizobium etli CE3. J Biol Chem 275:28017–28027. doi:10.1074/jbc.M004009200

    PubMed  CAS  Google Scholar 

  • Raetz CR, Reynolds CM, Trent MS, Bishop RE (2007) Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem 76:295–329. doi:10.1146/annurev.biochem.76.010307.145803

    Article  PubMed  CAS  Google Scholar 

  • Reuhs BL, Kim JS, Badgett A, Carlson RW (1994) Production of cell-associated polysaccharides of Rhizobium fredii USDA205 is modulated by apigenin and host root extract. MPMI-Mol Plant Microbe Interact 7:240–247. doi:10.1094/MPMI-7-0240

    Article  CAS  Google Scholar 

  • Ribeiro RA, Rogel MA, López-López A, Ormeño-Orrillo E, Barcellos FG, Martínez J, Thompson FL, Martínez-Romero E, Hungria M (2012) Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov. Int J Syst Evol Microbiol 62:1179–1184

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schultze M, Kondorosi Á (1996) The role of lipochitooligosaccharides in root nodule organogenesis and plant cell growth. Curr Opin Genet Dev 6:631–638. doi:10.1016/s0959-437x(96)80094-3

    Article  PubMed  CAS  Google Scholar 

  • Simsek S, Ojanen-Reuhs T, Marie C, Reuhs BL (2009) An apigenin-induced decrease in K-antigen production by Sinorhizobium sp. NGR234 is y4gM- and nodD1-dependent. Carbohydr Res 344:1947–1950. doi:10.1016/j.carres.2009.07.006

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of the root-nodule bacteria. International biological programme handbook, 15. Blackwell Oxford pp. 164

  • Wang X, Quinn PJ (2010) Lipopolysaccharide: biosynthetic pathway and structure modification. Prog Lipid Res 49:97–107. doi:10.1016/j.plipres.2009.06.002

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was partially supported by the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil) (Repensa, 557746/2009-4). L. R. Oliveira acknowledges an M.Sc. fellowship (552874/2008-6) and M. Hungria, a research fellowship (300547/2010-2) from CNPq. The authors thank Allan R.J. Eaglesham for help with the manuscript. Manuscript approved for publication by the Editorial Board of Embrapa Soja as manuscript 18/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariangela Hungria.

Additional information

Luciana Ruano Oliveira and Elisete Pains Rodrigues contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary fig. 1

Unrooted phylogenetic analysis (top) and genomic arrangement (bottom) of lpxE gene from closely related bacteria. Neighbor-joining analysis was based on ClustalW alignment of translated nucleotide sequences (accession numbers are provided as supplementary file) using the maximum composite likelihood method. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (2,000 replicates) is shown above the branches. Only bootstrapping values >80 are shown. Evolutionary analyses were performed in MEGA 5 (Tamura et al. 2011; Saitou and Nei 1987; Tamura et al. 2004; Felsenstein 1985) (DOCX 145 kb)

ESM 2

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, L.R., Rodrigues, E.P., Marcelino-Guimarães, F.C. et al. Fast induction of biosynthetic polysaccharide genes lpxA, lpxE, and rkpI of Rhizobium sp. strain PRF 81 by common bean seed exudates is indicative of a key role in symbiosis. Funct Integr Genomics 13, 275–283 (2013). https://doi.org/10.1007/s10142-013-0322-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-013-0322-7

Keywords

Navigation