Skip to main content
Log in

scRNA-seq Analysis of Hemocytes of Penaeid Shrimp Under Virus Infection

  • Research
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The classification of cells in non-model organisms has lagged behind the classification of cells in model organisms that have established cluster of differentiation marker sets. To reduce fish diseases, research is needed to better understand immune-related cells, or hemocytes, in non-model organisms like shrimp and other marine invertebrates. In this study, we used Drop-seq to examine how virus infection affected the populations of hemocytes in kuruma shrimp, Penaeus japonicus, which had been artificially infected with a virus. The findings demonstrated that virus infection reduced particular cell populations in circulating hemolymph and inhibited the expression of antimicrobial peptides. We also identified the gene sets that are likely to be responsible for this reduction. Additionally, we identified functionally unknown genes as novel antimicrobial peptides, and we supported this assumption by the fact that these genes were expressed in the population of hemocytes that expressed other antimicrobial peptides. In addition, we aimed to improve the operability of the experiment by conducting Drop-seq with fixed cells as a source and discussed the impact of methanol fixation on Drop-seq data in comparison to previous results obtained without fixation. These results not only deepen our understanding of the immune system of crustaceans but also demonstrate that single-cell analysis can accelerate research on non-model organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Sequencing data have been deposited in DDBJ under accession codes DRA015407. Data code can be accessed at https://github.com/KeiichiroKOIWAI/Drop-seq-PjHem

The following dataset was generated:

Author(s)

Year

Dataset title

Dataset URL

Database and identifier

Koiwai K, Kondo H, Hirono I

2022

Raw sequence data of drop-seq

https://ddbj.nig.ac.jp/public/ddbj_database/dra/fastq/DRA015/DRA015407/

DDBJ Sequence Read Archive, DRA015407

The following previously published dataset was used:

Author(s)

Year

Dataset title

Dataset URL

Database and identifier

Koiwai K, Koyama T, Tsuda S, Toyoda A, Kikuchi K, Suzuki H, Kawano R

2020

Raw sequence data of drop-seq on shrimp 1

https://ddbj.nig.ac.jp/public/ddbj_database/dra/fastq/DRA010/DRA010950/

DDBJ Sequence Read Archive, DRA010950

Koiwai K, Koyama T, Tsuda S, Toyoda A, Kikuchi K, Suzuki H, Kawano R

2020

Raw sequence data of drop-seq on shrimp 2

https://ddbj.nig.ac.jp/public/ddbj_database/dra/fastq/DRA010/DRA010951/

DDBJ Sequence Read Archive, DRA010951

Koiwai K, Koyama T, Tsuda S, Toyoda A, Kikuchi K, Suzuki H, Kawano R

2020

Raw sequence data of drop-seq on shrimp 3

https://ddbj.nig.ac.jp/public/ddbj_database/dra/fastq/DRA010/DRA010952/

DDBJ Sequence Read Archive, DRA010952

References

  • Alles J, Karaiskos N, Praktiknjo SD, Grosswendt S, Wahle P, Ruffault PL, Ayoub S, Schreyer L, Boltengagen A, Birchmeier C, Zinzen R, Kocks C, Rajewsky N (2017) Cell fixation and preservation for droplet-based single-cell transcriptomics. BMC Biol 15:44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Biočanin M, Bues J, Dainese R, Amstad E, Deplancke B (2019) Simplified Drop-seq workflow with minimized bead loss using a bead capture and processing microfluidic chip. Lab Chip 19:1610–1620.

    Article  CAS  PubMed  Google Scholar 

  • Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36:411–420. 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charoensapsri W, Sangsuriya P, Lertwimol T, Gangnonngiw W, Phiwsaiya K, Senapin S (2015) Laminin receptor protein is implicated in hemocyte homeostasis for the whiteleg shrimp Penaeus (Litopenaeus) vannamei. Dev Comp Immunol 51:39–47.

    Article  CAS  PubMed  Google Scholar 

  • Cui C, Liang Q, Tang X, Xing J, Sheng X,  Zhan W (2020) Differential apoptotic responses of hemocyte subpopulations to white spot syndrome virus infection in Fenneropenaeus chinensis. Front Immunol 11:594390. https://doi.org/10.3389/fimmu.2020.594390

  • Cui C, Tang X, Xing J, Sheng X, Chi H, Zhan W (2022) Single-cell RNA-seq uncovered hemocyte functional subtypes and their differentiational characteristics and connectivity with morphological subpopulations in Litopenaeus vannamei. Front Immunol 13:980021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21.

    Article  CAS  PubMed  Google Scholar 

  • Elbahnaswy S, Koiwai K, Zaki VH, Shaheen AA, Kondo H, Hirono I (2017) A novel viral responsive protein (MjVRP) from Marsupenaeus japonicus haemocytes is involved in white spot syndrome virus infection. Fish Shellfish Immunol 70:638–647.

    Article  CAS  PubMed  Google Scholar 

  • Flegel TW (2012) Historic emergence, impact and current status of shrimp pathogens in Asia. J Invertebr Pathol 110:166–173.

    Article  PubMed  Google Scholar 

  • Flegel TW (2019) A future vision for disease control in shrimp aquaculture. J World Aquaculture Soc 50:249–266

    Article  Google Scholar 

  • Garcia-Castro H, Kenny NJ, Iglesias M, Alvarez-Campos P, Mason V, Elek A, Schonauer A, Sleight VA, Neiro J, Aboobaker A, Permanyer J, Irimia M, Sebe-Pedros A, Solana J (2021) ACME dissociation: a versatile cell fixation-dissociation method for single-cell transcriptomics. Genome Biol 22:89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, Hoffman P, Stoeckius M, Papalexi E, Mimitou EP, Jain J, Srivastava A, Stuart T, Fleming LM, Yeung B, Satija R (2021) Integrated analysis of multimodal single-cell data. Cell 184:3573-3587.e29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huan Y, Kong Q, Mou H, Yi H (2020) Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol 11:582779.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawato S, Nishitsuji K, Arimoto A, Hisata K, Kawamitsu M, Nozaki R, Kondo H, Shinzato C, Ohira T, Satoh N, Shoguchi E, Hirono I (2021) Genome and transcriptome assemblies of the kuruma shrimp, Marsupenaeus japonicus. G3 11(11). https://doi.org/10.1093/g3journal/jkab268

  • Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:1187–1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koiwai K, Koyama T, Tsuda S, Toyoda A, Kikuchi K, Suzuki H,  Kawano R (2021) Single-cell RNA-seq analysis reveals penaeid shrimp hemocyte subpopulations and cell differentiation process. eLife 10 e66954. https://doi.org/10.7554/eLife.66954

  • Li H, Xu H, Zhao C, Sulaiman Y, Wu C (2011) A PCR amplification method without DNA extraction. Electrophoresis 32:394–397.

    Article  CAS  PubMed  Google Scholar 

  • Li C, Li H, Chen Y, Chen Y, Wang S, Weng S-P, Xu X, He J (2015) Activation of Vago by interferon regulatory factor (IRF) suggests an interferon system-like antiviral mechanism in shrimp. Sci Rep 5:15078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Zheng Z, Li H, Fu R, Xu L, Yang F (2021) Crayfish hemocytes develop along the granular cell lineage. Sci Rep 11:13099. https://doi.org/10.1038/s41598-021-92473-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhou F, Yang Q, Jiang S, Huang, J, Yang L, Ma Z, Jiang S (2022) Single-cell sequencing reveals types of hepatopancreatic cells and haemocytes in black tiger shrimp (Penaeus monodon) and their molecular responses to ammonia stress. Front Immunol 13. https://doi.org/10.3389/fimmu.2022.883043

  • Lin X, Söderhäll K, Söderhäll I (2011) Invertebrate hematopoiesis: an astakine-dependent novel hematopoietic factor. J Immunol 186:2073–2079.

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Akin H, Rao R, Hie B, Zhu Z, Lu W, Smetanin N, Verkuil R, Kabeli O, Shmueli Y, dos Santos Costa A, Fazel-Zarandi M, Sercu T, Candido S, Rives A (2023) Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379:1123–1130.

    Article  CAS  PubMed  Google Scholar 

  • Lin TT, Yang LY, Lu IH, Cheng WC, Hsu ZR, Chen S-H,  Lin, CY (2021) AI4AMP: an Antimicrobial peptide predictor using physicochemical property-based encoding method and deep learning. mSystems 6:e0029921.

  • Liu MJ, Liu S, Liu HP (2021) Recent insights into hematopoiesis in crustaceans. Fish and Shellfish Immunol Reports 2:100040.

    Article  Google Scholar 

  • Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng J, Wang W-X (2022) Highly sensitive and specific responses of oyster hemocytes to copper exposure: single-cell transcriptomic analysis of different cell populations. Environ Sci Technol 56:2497–2510.

    Article  CAS  PubMed  Google Scholar 

  • Meng J, Zhang G, Wang W-X (2022) Functional heterogeneity of immune defenses in molluscan oysters Crassostrea hongkongensis revealed by high-throughput single-cell transcriptome. Fish Shellfish Immunol 120:202–213.

    Article  CAS  PubMed  Google Scholar 

  • Naylor RL, Hardy RW, Buschmann AH, Bush SR, Cao L, Klinger DH, Little DC, Lubchenco J, Shumway SE, Troell M (2021) A 20-year retrospective review of global aquaculture. Nature 591:551–563.

    Article  CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612.

    Article  CAS  PubMed  Google Scholar 

  • Ren Q, Huang X, Cui Y, Sun J, Wang W,  Zhang X (2017. Two white spot syndrome virus microRNAs target the dorsal gene to promote virus infection in Marsupenaeus japonicus shrimp. J Virol 91(8). https://doi.org/10.1128/JVI.02261-16

  • De Rop F, Ismail JN, Bravo González-Blas C, Hulselmans GJ, Flerin CC, Janssens J, Theunis K, Christiaens VM, Wouters J, Marcassa G, de Wit J, Poovathingal S,  Aerts S (2022) HyDrop enables droplet based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads. eLife 11. https://doi.org/10.7554/eLife.73971

  • Satija R, Farrell JA, Gennert D, Schier AF, Regev A (2015) Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33:495–502. 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saucedo-Vázquez JP, Gushque F, Vispo NS, Rodriguez J, Gudiño-Gomezjurado ME, Albericio F, Tellkamp MP, Alexis F (2022) Marine arthropods as a source of antimicrobial peptides. Mar Drugs 20(8). https://doi.org/10.3390/md20080501

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682.

    Article  CAS  PubMed  Google Scholar 

  • Söderhäll I (2013) Recent advances in crayfish hematopoietic stem cell culture: a model for studies of hemocyte differentiation and immunity. Cytotechnology 65:691–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Söderhäll I, Fasterius E, Ekblom C,  Söderhäll K (2022) Characterization of hemocytes and hematopoietic cells of a freshwater crayfish based on single-cell transcriptome analysis. iScience 104850. https://doi.org/10.1016/j.isci.2022.104850

  • Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM III, Hao Y, Stoeckius M, Smibert P, Satija R (2019) Comprehensive integration of single-cell data. Cell 177:1888-1902 e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Li F, Xiang J (2013) Analysis on the dynamic changes of the amount of WSSV in Chinese shrimp Fenneropenaeus chinensis during infection. Aquaculture 376–379:124–132.

    Article  Google Scholar 

  • Sun X, Li L, Wu B, Ge J, Zheng Y, Yu T, Zhou L, Zhang T, Yang A, Liu Z (2021) Cell type diversity in scallop adductor muscles revealed by single-cell RNA-Seq. Genomics. https://doi.org/10.1016/j.ygeno.2021.08.015

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Li S, Li F,  Xiang J (2014) Bioinformatic prediction of WSSV-host protein-protein interaction. BioMed Res Int 2014 416543 https://doi.org/10.1155/2014/416543

  • Tassanakajon A, Somboonwiwat K, Supungul P, Tang S (2013) Discovery of immune molecules and their crucial functions in shrimp immunity. Fish Shellfish Immunol 34:954–967.

    Article  CAS  PubMed  Google Scholar 

  • Teufel F, Almagro Armenteros JJ, Johansen AR, Gíslason MH, Pihl SI, Tsirigos KD, Winther O, Brunak S, von Heijne G, Nielsen H (2022) SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol 40:1023–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tincu JA, Taylor SW (2004) Antimicrobial peptides from marine invertebrates. Antimicrob Agents Chemother 48:3645–3654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Braak CBT, Botterblom MHA, Huisman EA, Rombout JHWM, van der Knaap WPW (2002) Preliminary study on haemocyte response to white spot syndrome virus infection in black tiger shrimp Penaeus monodon. Dis Aquat Org 51:149–155.

    Article  Google Scholar 

  • Van Phan H, van Gent M, Drayman N, Basu A, Gack MU, Tay S (2021) High-throughput RNA sequencing of paraformaldehyde-fixed single cells. Nat Commun 12:5636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veltri D, Kamath U, Shehu A (2018) Deep learning improves antimicrobial peptide recognition. Bioinformatics 34:2740–2747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YT, Liu W, Seah JN, Lam CS, Xiang JH, Korzh V, Kwang J (2002) White spot syndrome virus (WSSV) infects specific hemocytes of the shrimp Penaeus merguiensis. Dis Aquat Org 52:249–259.

    Article  CAS  Google Scholar 

  • Wang F, Li S, Xiang J, Li F (2019) Transcriptome analysis reveals the activation of neuroendocrine-immune system in shrimp hemocytes at the early stage of WSSV infection. BMC Genomics 20:247.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Yu L, Wu AR (2021) The effect of methanol fixation on single-cell RNA sequencing data. BMC Genomics 22:420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wohnhaas CT, Leparc GG, Fernandez-Albert F, Kind D, Gantner F, Viollet C, Hildebrandt T, Baum P (2019) DMSO cryopreservation is the method of choice to preserve cells for droplet-based single-cell RNA sequencing. Sci Rep 9:10699.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wongprasert K, Khanobdee K, Glunukarn SS, Meeratana P, Withyachumnarnkul B (2003) Time-course and levels of apoptosis in various tissues of black tiger shrimp Penaeus monodon infected with white-spot syndrome virus. Dis Aquat Org 55:3–10.

    Article  Google Scholar 

  • Xin F, Zhang X (2023) Hallmarks of crustacean immune hemocytes at single-cell resolution. Front Immunol 14:1121528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue S, Liu Y, Zhang Y, Sun Y, Geng X, Sun J (2013) Sequencing and de novo analysis of the hemocytes transcriptome in Litopenaeus vannamei response to white spot syndrome virus infection. PloS One 8:e76718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Li S, Li F, Wen R, Xiang J (2015) Analysis on the expression and function of syndecan in the Pacific white shrimp Litopenaeus vannamei. Dev Comp Immunol 51:278–286.

    Article  CAS  PubMed  Google Scholar 

  • Yang P, Chen Y, Huang Z, Xia H, Cheng L, Wu H, Zhang Y, Wang F (2022) Single-cell RNA sequencing analysis of shrimp immune cells identifies macrophage-like phagocytes. eLife 11. https://doi.org/10.7554/eLife.80127

  • Zhang K, Koiwai K, Kondo H, Hirono I (2018) White spot syndrome virus (WSSV) suppresses penaeidin expression in Marsupenaeus japonicus hemocytes. Fish Shellfish Immunol 78:233–237.

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Yang C, Chen X, Liu Q, Li Q, Peng M, Wang H, Chen X, Yang Q, Liao Z, Li M, Pan C, Feng P, Zeng D, Zhao Y (2021) Single-cell ribonucleic acid sequencing clarifies cold tolerance mechanisms in the Pacific white shrimp (Litopenaeus vannamei). Front Gene 12:792172.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank On-chip Biotechnologies Co., Ltd. for providing their pressure pump On-chip Droplet Generator; Hiroaki Suzuki (Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, Bunkyo, Japan) and Ryuji Kawano (Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan) for their technical support in the fabrication of the Drop-seq microfluidic devices, and GenomeLead for the sequencing of Drop-seq libraries by NovaSeq 600.

Funding

This work was supported by Japan Society for Promotion of Science (JSPS) KAKENHI Grant-in-Aid for Early-Career Scientists Grant Number 20K15603 and Japan Science and Technology Agency (JST) ACT-X Grant Number JPMJAX21B5 to Keiichiro Koiwai; JSPS KAKENHI Grant Numbers 22H00379 and Science and Technology Research Partnership for Sustainable Development (SATREPS) in collaboration between JST and Japan International Cooperation Agency (JICA) Grant Number JPMJSA1806 to Ikuo Hirono.

Author information

Authors and Affiliations

Authors

Contributions

K. Koiwai designed the experiments, performed the experiments, analyzed the data, and wrote the manuscript; H. Kondo and I. Hirono supervised the research.

Corresponding author

Correspondence to Keiichiro Koiwai.

Ethics declarations

Ethics Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koiwai, K., Kondo, H. & Hirono, I. scRNA-seq Analysis of Hemocytes of Penaeid Shrimp Under Virus Infection. Mar Biotechnol 25, 488–502 (2023). https://doi.org/10.1007/s10126-023-10221-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-023-10221-8

Keywords

Navigation