Skip to main content
Log in

Regulation of the Expression of the Myosin Heavy Chain (MYH) Gene myh14 in Zebrafish Development

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The human sarcomeric myosin heavy chain gene MYH14 contains an intronic microRNA, miR-499. Our previous studies demonstrated divergent genomic organization and expression patterns of myh14/miR-499 among teleosts; however, the regulatory mechanism is partly known. In this study, we report the regulation of myh14 expression in zebrafish, Danio rerio. Zebrafish myh14 has three paralogs, myh14-1, myh14-2, and myh14-3. Detailed promoter analysis suggested that a 5710-bp 5′-flanking region of myh14-1 and a 5641-bp region of myh14-3 contain a necessary regulatory region to recapitulate specific expression during embryonic development. The 5′-flanking region of zebrafish myh14-1 and its torafugu ortholog shared two distal and a single proximal conserved region. The two distal conserved regions had no effect on zebrafish myh14-1 expression, in contrast to torafugu expression, suggesting an alternative regulatory mechanism among the myh14 orthologs. Comparison among the 5′-flanking regions of the myh14 paralogs revealed two conserved regions. Deletion of these conserved regions significantly reduced the promoter activity of myh14-3 but had no effect on myh14-1, indicating different cis-regulatory mechanisms of myh14 paralogs. Loss of function of miR-499 resulted in a marked reduction in slow muscle fibers in embryonic development. Our study identified different cis-regulatory mechanisms controlling the expression of myh14/miR-499 and an indispensable role of miR-499 in muscle fiber–type specification in zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akolkar DB, Kinoshita S, Yasmin L, Ono Y, Ikeda D, Yamaguchi H, Nakaya M, Erdogan O, Watabe S (2010) Fibre type-specific expression patterns of myosin heavy chain genes in adult torafugu Takifugu rubripes muscles. J Exp Biol 213:137–145

    Article  CAS  PubMed  Google Scholar 

  • Asaduzzaman M, Kinoshita S, Bhuiyan SS, Asakawa S, Watabe S (2011) Multiple cis-elements in the 5′-flanking region of embryonic/larval fast-type of the myosin heavy chain gene of torafugu, MYHM743-2, function in the transcriptional regulation of its expression. Gene 489:41–54

    Article  CAS  PubMed  Google Scholar 

  • Asaduzzaman M, Kinoshita S, Bhuiyan SS, Asakawa S, Watabe S (2013) Stimulatory and inhibitory mechanisms of slow muscle-specific myosin heavy chain gene expression in fish: transient and transgenic analysis of torafugu MYH(M86–2) promoter in zebrafish embryos. Exp Cell Res 319(6):820–837

    Article  CAS  PubMed  Google Scholar 

  • Baxendale S, Davison C, Muxworthy C, Wolff C, Ingham PW, Roy S (2004) The B-cell maturation factor Blimp-1 specifies vertebrate slow-twitch muscle fiber identity in response to Hedgehog signaling. Nat Genet 36:88–93

    Article  CAS  PubMed  Google Scholar 

  • Bell ML, Buvoli M, Leinwand LA (2010) Uncoupling of expression of an intronic microRNA and its myosin host gene by exon skipping. Mol Cell Biol 30:1937–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg JS, Powell BC, Cheney RE (2001) A millennial myosin census. Mol Biol Cell 12:780–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhuiyan SS, Kinoshita S, Wongwarangkana C, Asaduzzaman M, Asakawa S, Watabe S (2013) Evolution of the myosin heavy chain gene MYH14 and its intronic microRNA miR-499: muscle-specific miR-499 expression persists in the absence of the ancestral host gene. BMC Evolutionary Biol 13:122

    Article  CAS  Google Scholar 

  • Bhuiyan SS, Kinoshita S, Wongwarangkana C, Asakawa S, Watabe S (2016) Evolution and distribution of teleost myomiRNAs: functionally diversified myomiRs in teleosts. Marine Biotech 18(3):436–447

    Article  CAS  Google Scholar 

  • Chen JK, Taipale J, Cooper MK, Beachy PA (2002) Inhibition of hedgehog signaling by direct binding of cyclopamine to smoothened. Genes Dev 16:2743–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crow MT, Stockdale FE (1986) Myosin expression and specialization among the earliest muscle fibers of the developing avian limb. Dev Biol 113:238–254

    Article  CAS  PubMed  Google Scholar 

  • Darby IA, Bisucci T, Desmouliere A, Hewitson TD (2006) In situ hybridization using cRNA probes: isotopic and nonisotopic detection methods. Methods Mol Biol 326:17–31

    CAS  PubMed  Google Scholar 

  • Desjardins PR, Burkman JM, Shrager JB, Allmond LA, Stedman HH (2002) Evolutionary implications of three novel members of the human sarcomeric myosin heavy chain gene family. Mol Biol Evol 19:375–393

    Article  CAS  PubMed  Google Scholar 

  • Devoto SH, Melancon E, Eisen JS, Westerfield M (1996) Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Devlopment 122:3371–3380

    CAS  Google Scholar 

  • Elworthy S, Hargrave M, Knight R, Mebus K, Ingham PW (2008) Expression of multiple slow myosin heavy chain genes reveals a diversity of zebrafish slow twitch muscle fibers with differing requirements for Hedgehog and Prdm1 activity. Development 135:2115–2126

    Article  CAS  PubMed  Google Scholar 

  • Fisher S, Grice EA, Vinton RM, Bessling SL, Urasaki A, Kawakami K, McCallion AS (2006) Evaluating the biological relevance of putative enhancers using Tol2 transposon-mediated transgenesis in zebrafish. Nat Protoc 1:1297–1305

    Article  CAS  PubMed  Google Scholar 

  • Hatta K, Kimmel CB, Ho RK, Walker C (1991) The cyclops mutation blocks specification of the floor plate of the zebrafish central nervous system. Nature 350:339–341

    Article  CAS  PubMed  Google Scholar 

  • Ikeda D, Ono Y, Snell P, Edwards YJ, Elgar G, Watabe S (2007) Divergent evolution of the myosin heavy chain gene family in fish and tetrapods: evidence from comparative genomic analysis. Physiol Genomics 32:1–15

    Article  CAS  PubMed  Google Scholar 

  • Incardona JP, Gaffield W, Kapur RP, Roelink H (1998) The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction. Development 125:3553–3562

    Article  CAS  PubMed  Google Scholar 

  • Kawakami K, Shima A, Kawakami N (2000) Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci USA 97:11403–11408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Mishina M (2004) A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7:133–144

    Article  CAS  PubMed  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel RS, Ullmann B, Schilling FT (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita S, Ceyhun SB, Md A, Bhuiyan SS, Akolkar DB, Asakawa S, Watabe S (2018) Promoter analysis of the fish gene of slow/cardiac-type myosin heavy chain implicated in specification of muscle fiber types. Fish Physiol & Biochem 44(2):679–691

    Article  CAS  Google Scholar 

  • Kinoshita S, Bhuiyan SS, Ceyhun SB, Asaduzzaman M, Asakawa S, Watabe S (2011) Species-specific expression variation of fish MYH14, an ancient vertebrate myosin heavy chain gene ortholog. Fish Sci 77:847–853

    Article  CAS  Google Scholar 

  • Kobiyama A, Hirayama M, Muramatsu-Uno M, Watabe S (2006) Functional analysis on the 5’-flanking region of carp fast skeletal myosin heavy chain genes for their expression at different temperatures. Gene 372:82–91

    Article  CAS  PubMed  Google Scholar 

  • Korzh V (2007) Transposons as tools for enhancer trap screens in vertebrates. Genome Biol 8(Suppl 1):S8

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang CS, Ikeda D, Kinoshita S, Shimizu A, Sasaki T, Asakawa S, Shimizu N, Watabe S (2008) Myocyte enhancer factor 2 regulates expression of medaka Oryzias latipes fast skeletal myosin heavy chain genes in a temperature-dependent manner. Gene 407:42–53

    Article  CAS  PubMed  Google Scholar 

  • McCarthy JJ, Esser AK, Peterson AC, Dupont-Versteegden EE (2009) Evidence of MyomiR network regulation of β-myosin heavy chain gene expression during skeletal muscle atrophy. Physiol Genomics 39:219–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochi S, Westerfield M (2007) Signaling networks that regulate muscle development: lessons from zebrafish. Dev Growth Differ 49(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Ono Y, Kinoshita S, Ikeda D, Watabe S (2010) Early development of medaka Oryzias latipes muscles as revealed by transgenic approaches using embryonic and larval types of myosin heavy chain genes. Dev Dyn 239:1807–1817

    Article  CAS  PubMed  Google Scholar 

  • Quiat D, Voelkar Pei KA, Grishin J, Grange RW, Bassel-Duby OEN (2011) Concerted regulation of myofiber-specific gene expression and muscle performance by the transcription repressor Sox6. Proc Natl Acad Sci USA 108:10196–10201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy S, Wolff C, Ingham PW (2001) The u-boot mutation identifies a Hedgehog-regulated myogenic switch for fiber-type diversification in the zebrafish embryo. Genes Dev 15:1563–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • RStudio team, (2020) RStudio: integrated development for RStudio. PBC, Boston, MA

    Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ Jr, Olson EN (2009) A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 17:662–673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • von Hofsten J, Elworthy S, Gilchrist MJ, Smith JC, Wardle FC, Ingham PW (2008) Prdm1- and Sox6-mediated transcriptional repression specifies muscle fiber type in the zebrafish embryo. EMBO Rep 9:683–689

    Article  CAS  Google Scholar 

  • Wang X, Ono Y, Tan CS, Chai RJ, Philip C, Ingham PW (2011) Prdm1a and miR-499 act sequentially to restrict Sox6 activity to the fast-twitch muscle lineage in the zebrafish embryo. Development 138:4399–4404

    Article  CAS  PubMed  Google Scholar 

  • Weiss A, McDonough D, Wertman B, Acakpo-Satchivi L, Montgomery K, Leinwand KR, L, Krauter K, (1999a) Organization of human and mouse skeletal myosin heavy chain gene clusters is highly conserved. Proc Natl Acad Sci USA 96:2958–2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss A, Schiaffino S, Leinwand LA (1999b) Comparative sequence analysis of the complete human sarcomeric myosin heavy chain family: implications for functional diversity. J Mol Biol 290:61–75

    Article  CAS  PubMed  Google Scholar 

  • Westerfield M (1993) The zebrafish book. University of Oregon Press, Eugene, A guide for the laboratory use of zebrafish (Danio rerio)

    Google Scholar 

  • Wilson KD, Hu S, Venkatasubrahmanyam S, Fu JD, Sun N, Abilez OJ, Baugh JJ, Jia F, Ghosh Z, Li RA (2011) Dynamic microRNA expression programs during cardiac differentiation of human embryonic stem cells: role for miR-499. Circ Cardiovasc Genet 3:426–435

    Article  CAS  Google Scholar 

  • Yasmin L, Kinoshita S, Akolkar DB, Asaduzzaman M, Ikeda D, Ono Y, Watabe S (2010) A 5′-flanking region of embryonic-type myosin heavy chain gene, MYHM743-2, from torafugu (Takifugu rubripes) regulates developmental muscle-specific expression. Comp Biochem Physiol 6:76–81

    Google Scholar 

  • Yeung F, Chung E, Guess MG, Bell ML, Leinwand LA (2012) Myh7b/miR-499 gene expression is transcriptionally regulated by MRFs and EOS. Nucleic Acids Res 40:7303–7318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was partly supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science and by the start-up package from Texas A&M International University.

Author information

Authors and Affiliations

Authors

Contributions

S.H. and S.K. conceived and designed the study and performed the experiments. S.H. performed the data acquisition and interpretation. S.A. and S.W. participated in research design and coordination. S.H. wrote the manuscript.

Corresponding author

Correspondence to Sharmin Hasan.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 113 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, S., Asakawa, S., Watabe, S. et al. Regulation of the Expression of the Myosin Heavy Chain (MYH) Gene myh14 in Zebrafish Development. Mar Biotechnol 23, 821–835 (2021). https://doi.org/10.1007/s10126-021-10066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-021-10066-z

Keywords

Navigation