Skip to main content

Advertisement

Log in

Subtle Difference Generates Big Dissimilarity: Comparison of Enzymatic Activity in KL1 and KL2 Domains of Lancelet Klotho

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Klotho, a putative aging suppressor, shares sequence similarity with members of the glycosidase family 1. It has been identified in several vertebrate species, but only mouse Klotho has so far been proven to exhibit β-glucuronidase activity. Thus, the argument that Klotho from animals other than mouse has glycosidase activity remains open. Moreover, little information is available regarding the structure-activity relationship of Klotho. Here, we demonstrate the presence of a single klotho gene in the amphioxus Branchiostoma japonicum, Bjklotho, which possesses two tandem domains named BjKL1 and BjKL2, and each of them has two glutamic acid residues that have been shown to be involved in the catalytic activity of family 1 glycosidase. Enzymatic activity assays of the recombinant proteins BjKL1 and BjKL2 revealed that only BjKL2 displayed β-glucosidase activity, but BjKL1 did not. Structural analysis showed that there existed nine consecutive but not conserved residues in the β6α6 loop, which affects the conformational form in the entrance to the catalytic pocket of BjKL1 and BjKL2, thereby leading to a subtle difference in the enzyme-substrate binding and interaction. Furthermore, the substitution of the nine residues 354QNRVDPNDT362 in BjKL1 by the residues 884EDNVVVGAA892 in BjKL2 resulted in significant increase in β-glucosidase activity in the BjKL1 mutant. Our results indicate that BjKL2 possesses β-glucosidase, the first data as such in invertebrates. We also identify, for the first time, the residues 884EDNVVVGAA892 in BjKL2 a sequence critical and indispensable for glucosidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andrukhova O, Smorodchenko A, Egerbacher M, Streicher C, Zeitz U, Goetz R, Shalhoub V, Mohammadi M, Pohl EE, Lanske B, Erben RG (2014) FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J 33:229–246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand S, Camasses A, Somorjai I, Belgacem MR, Chabrol O, Escande ML, Pontarotti P, Escriva H (2011) Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits. Proc Natl Acad Sci U S A 108:9160–9165

    Article  PubMed  PubMed Central  Google Scholar 

  • Bloch L, Sineshchekova O, Reichenbach D, Reiss K, Saftig P, Kuro-O M, Kaether C (2009) Klotho is a substrate for α-, β- and γ-secretase. FEBS Lett 583:3221–3224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cha SK, Hu MC, Kurosu H, Kuro-o M, Moe O, Huang CL (2009) Regulation of renal outer medullary potassium channel and renal K+ excretion by klotho. Mol Pharmacol 76:38–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Liu Y, Goetz R, Fu L, Jayaraman S, Hu MC, Moe OW, Liang G, Li X, Mohammadi M (2018) α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature 553:461–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chester MA, Hultberg B, Ockerman PA (1976) The common identity of five glycosidases in human liver. Biochim Biophys Acta 429:517–526

    Article  CAS  PubMed  Google Scholar 

  • Chtȃeau MT, Araiz C, Descamps S, Galas S (2010) Klotho interferes with a novel FGF-signalling pathway and insulin/Igf-like signalling to improve longevity and stress resistance in Caenorhabditis elegans. Aging 2:567–581

    Article  Google Scholar 

  • Gazdhar A, Ravikumar P, Pastor J, Heller M, Ye J, Zhang J, Moe OW, Geiser T, Hsia CCW (2017) Alpha-klotho enrichment in induced pluripotent stem cell secretome contributes to antioxidative protection in acute lung injury. Stem Cells 36:616–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goetz R, Beenken A, Ibrahimi OA, Kalinina J, Olsen SK, Eliseenkova AV, Xu C, Neubert TA, Zhang F, Linhardt RJ, Yu X, White KE, Inagaki T, Kliewer SA, Yamamoto M, Kurosu H, Ogawa Y, Kuro-o M, Lanske B, Razzaque MS, Mohammadi M (2007) Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol 27:3417–3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi Y, Okino N, Kakuta Y, Shikanai T, Tani M, Narimatsu H, Ito M (2007) Klotho-related protein is a novel cytosolic neutral beta-glycosylceramidase. J Biol Chem 282:30889–30900

    Article  CAS  PubMed  Google Scholar 

  • Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Hwang KH, Park KS, Kong ID, Cha SK (2015) Biological role of anti-aging protein klotho. J Lifestyle Med 5:1–6

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51

    Article  CAS  PubMed  Google Scholar 

  • Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, Mcguinness OP, Chikuda H, Yamaguchi M, Kawaguchi H, Shimomura I, Takayama Y, Herz J, Kahn CR, Rosenblatt KP, Kuro-o M (2005) Suppression of aging in mice by the hormone Klotho. Science 309:1829–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281:6120–6123

    Article  CAS  PubMed  Google Scholar 

  • Lamarco KL, Glew RH (1985) Galactosylsphingosine inhibition of the broad-specificity cytosolic beta-glucosidase of human liver. Arch Biochem Biophys 236:669–676

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Choi J, Mohanty J, Sousa LP, Tome F, Pardon E, Steyaert J, Lemmon MA, Lax I, Schlessinger J (2018) Structures of β-klotho reveal a ‘zip code’-like mechanism for endocrine FGF signalling. Nature 553:501–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legler G, Bieberich E (1988) Isolation of a cytosolic beta-glucosidase from calf liver and characterization of its active site with alkyl glucosides and basic glycosyl derivatives. Arch Biochem Biophys 260:427–436

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Matern H, Heinemann H, Legler G, Matern S (1997) Purification and characterization of a microsomal bile acid β-glucosidase from human liver. J Biol Chem 272:11261–11267

    Article  CAS  PubMed  Google Scholar 

  • Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y (1998) Identification of the human klotho gene and its two transcripts encoding membrane and secreted Klotho protein. Biochem Biophys Res Commun 242:626–630

    Article  CAS  PubMed  Google Scholar 

  • Mccarter JD, Withers SG (1994) Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4:885–892

    Article  CAS  PubMed  Google Scholar 

  • Ohyama Y, Kurabayashi M, Masuda H, Nakamura T, Aihara Y, Kaname T, Suga T, Arai M, Aizawa H, Matsumura Y, Kuro-o M, Nabeshima Y, Nagail R (1998) Molecular cloning of rat klotho cDNA: markedly decreased expression of klotho by acute inflammatory stress. Biochem Biophys Res Commun 251:920–925

    Article  CAS  PubMed  Google Scholar 

  • Polanska UM, Edwards E, Fernig DG, Kinnunen TK (2011) The cooperation of FGF receptor and Klotho is involved in excretory canal development and regulation of metabolic homeostasis in Caenorhabditis elegans. J Biol Chem 286:5657–5666

  • Qu B, Yang S, Ma Z, Gao Z, Zhang S (2016) A new LDLa domain-containing C-type lectin with bacterial agglutinating and binding activity in amphioxus. Gene 594:220–228

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy A, Yang J, Zhang Y (2012) COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res 40:W471–W477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rye CS, Withers SG (2000) Glycosidase mechanisms. Curr Opin Chem Biol 4:573–580

    Article  CAS  PubMed  Google Scholar 

  • Schutzbach JS, Forsee WT (1990) Calcium ion activation of rabbit liver alpha 1,2-mannosidase. J Biol Chem 265:2546–2549

    CAS  PubMed  Google Scholar 

  • Shiraki-Iida T, Aizawa H, Matsumura Y, Sekine S, Iida A, Anazawa H, Nagai R, Kuro-o M, Nabeshima YI (1998) Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Lett 424:6–10

    Article  CAS  PubMed  Google Scholar 

  • Sugano Y, Lardelli M (2011) Identification and expression analysis of the zebrafish orthologue of Klotho. Dev Genes Evol 221:179–186

    Article  CAS  PubMed  Google Scholar 

  • Tohyama O, Imura A, Iwano A, Freund JN, Henrissat B, Fujimori T, Nabeshima Y (2004) Klotho is a novel β-glucuronidase capable of hydrolyzing steroid β-glucuronides. J Biol Chem 279:9777–9784

    Article  CAS  PubMed  Google Scholar 

  • Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774

    Article  CAS  PubMed  Google Scholar 

  • Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8:127–134

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Sun Z (2009) Current understanding of klotho. Ageing Res Rev 8:43–51

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang S (2012) EF1α is a useful internal reference for studies of gene expression regulation in amphioxus Branchiostoma japonicum. Fish Shellfish Immunol 32:1068–1073

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Sun Z (2015) Molecular basis of Klotho: from gene to function in aging. Endocr Rev 36:174–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yahata K, Mori K, Arai H, Koide S, Ogawa Y, Mukoyama M, Sugawara A, Ozaki S, Tanaka I, Nabeshima Y, Nakao K (2000) Molecular cloning and expression of a novel klotho-related protein. J Mol Med 78:389–394

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Clark JD, Pastor JV, Gurnani P, Nandi A, Kurosu H, Miyoshi M, Ogawa Y, Castrillon DH, Rosenblatt KP, Kuro-o M (2005) Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem 280:38029–38034

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Mo H, Miao J, Zhou D, Tan RJ, Hou FF, Liu Y (2015) Klotho ameliorates kidney injury and fibrosis and normalizes blood pressure by targeting the renin-angiotensin system. Am J Pathol 185:3211–3223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the substantive input from all members of the Evolution & Development laboratory.

Funding

This work was supported by the grants of the Natural Science Foundation of China (31601862; U1401211).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhan Gao or Shicui Zhang.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 4326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Qu, B., Zhong, S. et al. Subtle Difference Generates Big Dissimilarity: Comparison of Enzymatic Activity in KL1 and KL2 Domains of Lancelet Klotho. Mar Biotechnol 21, 448–462 (2019). https://doi.org/10.1007/s10126-019-09891-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-019-09891-0

Keywords

Navigation