Skip to main content

Advertisement

Log in

Preferential Expression of a Bromoperoxidase in Sporophytes of a Red Alga, Pyropia yezoensis

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

A 2,158 bp cDNA (PyBPO1) encoding a bromoperoxidase (BPO) of 625 amino acids was isolated from Pyropia yezoensis. Phylogenetic analysis using amino acid sequences of BPOs suggested that P. yezoensis and cyanobacteria were grouped in the same clade and separated from brown algae. Genomic Southern blot analysis suggested that PyBPO1 existed as a single copy per haploid genome. RT-PCR revealed that PyBPO1 was actively expressed in filamentous sporophytes but repressed in leafy gametophytes under normal growth conditions. High expression levels of PyBPO1 in sporophytes were observed when sporophytes were grown under gametophyte conditions, suggesting that preferential expression of PyBPO1 occurs during the sporophyte phase. BPO activity of cell-free extracts from sporophytes and gametophytes was examined by activity staining on native PAGE gel using o-dianisidine. One activity band was detected in sporophyte sample, but not in gametophyte sample. In addition, we found that bromide and iodide were effective substrate, but chloride was not. BPO activity was observed—likely in chloroplasts—when sporophyte cells were incubated with o-dianisidine and hydrogen peroxide. Cellular BPO staining showed the same halogen preference identified by in-gel BPO staining. Based on GS-MS analysis, bromoform was detected in medium containing sporophytes. Bromoform was not detected under dark culture conditions but was detected in the culture exposed to low light intensity (5 μmol m−2 s−1) and increased under a moderate light intensity (30 μmol m−2 s−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Apt KE, Grossman AR (1993) Characterization and transcript analysis of the major phycobiliprotein subunit genes from Aglaothamnion neglectum (Rhodophyta). Plant Mol Biol 21:27–38

    Article  CAS  PubMed  Google Scholar 

  • Asamizu E, Nakajima M, Kitade Y, Saga N, Nakamura Y, Tabata S (2003) Comparison of RNA expression profiles between the two generations of Porphyra yezoensis (Rhodophyta), based on expressed sequence tag frequency analysis. J Phycol 39:923–930

    Article  Google Scholar 

  • Baharum H, Chu W-C, Teo S-S, Ng K-Y, Abdul Rahim R, Ho C-L (2013) Molecular cloning, homology modeling and site-directed mutagenesis of vanadium dependent bromoperoxidase (GcVBPO1) from Gracilaria changii (Rhodophyta). Phytochemistry 92:49–59

    Article  CAS  PubMed  Google Scholar 

  • Beissner RS, Guilford WJ, Coates RM, Hager LP (1981) Synthesis of brominated heptanones and bromoform by a bromoperoxidase of marine origin. Biochemistry 20:3727–3731

    Article  Google Scholar 

  • Blouin NA, Brodie JA, Grossman AC, Xu P, Brawley SH (2011) Porphyra: a marine crop shaped by stress. Trends Plant Sci 16:29–37

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram protein utilizing the principal of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Butler A, Carter-Franklin JN (2004) The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products. Nat Prod Rep 21:180–188

    Article  CAS  PubMed  Google Scholar 

  • Cabrita MT, Vale C, Rauter AP (2010) Halogenated compounds from marine algae. Mar Drugs 8:2301–2317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carter JN, Beatty KE, Simpson MT, Butler A (2002) Reactivity of recombinant and mutant vanadium bromoperoxidase from the red alga Corallina officinalis. J Inorg Biochem 91:59–69

    Article  CAS  PubMed  Google Scholar 

  • Cock JM, Sterck L, Rouzé P, Scornet D, Allen AE, Amoutzias G, Anthouard V, Artiguenave F, Aury JM, Badger JH et al (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621

    Article  CAS  PubMed  Google Scholar 

  • Colin C, Leblanc C, Wagner E, Delage L, Leize-Wagner E, Van Dorsselaer A, Kloareg B, Potin P (2003) The brown algal kelp Laminaria digitata features distinct bromoperoxidase and iodoperoxidase activities. J Biol Chem 278:23545–23552

    Article  CAS  PubMed  Google Scholar 

  • Colin C, Leblanc C, Michel G, Wagner E, Leize-Wagner E, Van Dorsselaer A, Potin P (2005) Vanadium-dependent iodoperoxidases in Laminaria digitata, a novel biochemical function diverging from brown algal bromoperoxidases. J Biol Inorg Chem 10:155–166

    Article  Google Scholar 

  • Collén J, Porcel B, Carré W, Ball SG, Chaparro C, Tonon T et al (2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci U S A 110:5247–5252

    Article  PubMed Central  PubMed  Google Scholar 

  • Cowan M (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    PubMed Central  CAS  PubMed  Google Scholar 

  • Crépineau F, Roscoe T, Kaas R, Kloareg B, Boyen C (2000) Characterisation of complementary DNAs from the expressed sequence tag analysis of life cycle stages of Laminaria digitata (Phaeophyceae). Plant Mol Biol 43:503–513

    Article  PubMed  Google Scholar 

  • Everett RR, Kanofsky JR, Butler A (1990) Mechanistic investigations of the novel non-heme vanadium bromoperoxidases. J Biol Chem 265:4908–4914

    CAS  PubMed  Google Scholar 

  • Fukui Y, Abe M, Kobayashi M, Yano Y, Satomi M (2014) Isolation of Hyphomonas strains that induce normal morphogenesis in protoplasts of the marine red alga Pyropia yezoensis. Microb Ecol 68:556–566

  • Gretz MR, Aronson JM, Sommerfeld MR (1984) Taxonomic significance of cellulosic cell walls in the Bangiales (Rhodophyta). Phytochemistry 23:2513–2514

    Article  CAS  Google Scholar 

  • Gribble GW (2003) The diversity of naturally produced organohalogens. Chemosphere 52:289–297

    Article  CAS  PubMed  Google Scholar 

  • Gupta V, Baghel RS, Kumar M, Kumari P, Mantri VA, Reddy CRK, Jha B (2011) Growth and agarose characteristics of isomorphic gametophyte (male and female) and sporophytes of Gracilaria dura and their marker assisted selection. Aquaculture 318:389–396

    Article  Google Scholar 

  • Hofsen AV, Pedersén M (1980) Bromine location in the red alga Odonthalia dentata. Z Pflanzenphysiol 96:115–122

    Article  Google Scholar 

  • Hofsen AV, Liljesvan B, Pedersén M (1977) Localization of bromine in the chloroplasts of the red alga Lenormandia prolifera. Bot Mar 20:267–270

    Google Scholar 

  • Isupov MN, Dalby AR, Brindley AA, Izumi Y, Tanabe T, Murshudov GN, Littlechild JA (2000) Crystal structure of dodecameric vanadium dependent bromoperoxidase from the red algae Corallina officinalis. J Mol Biol 299:1035–1049

    Article  CAS  PubMed  Google Scholar 

  • Johnson TL, Palenik B, Brahamsha B (2011) Characterization of a functional vanadium-dependent bromoperoxidase in the marine cyanobacteria Synechococcus sp. CC9311. J Phycol 47:792–801

    Article  CAS  Google Scholar 

  • Kuwano K, Aruga Y, Saga N (1996) Cryopreservation of clonal gametophytic thalli of Porphyra (Rhodophyta). Plant Sci 116:117–124

    Article  CAS  Google Scholar 

  • Kwon MJ, Nam TJ (2006) Porphyran induces apoptosis related signal pathway in AGS gastric cancer cell lines. Life Sci 79:1956–1962

    Article  CAS  PubMed  Google Scholar 

  • Latham H (2008) Temperature stress-induced bleaching of the coralline alga Corallina officinalis: a role for the enzyme bromoperoxidase. Biosci Horiz 1:104–113

    Article  CAS  Google Scholar 

  • Laturnus F (2001) Marine macroalgae in polar regions as natural sources for volatile organohalogens. Environ Sci Pollut Res 8:103–108

    Article  CAS  Google Scholar 

  • Laturnus F, Wiencke C, Kloser H (1996) Antarctic macroalgae-sources of volatile halogenated organic compounds. Mar Environ Res 41:169–181

    Article  CAS  Google Scholar 

  • Manley SL (2002) Phytogenesis of halomethanes: a product of selection or a metabolic accident? Biogeochemistry 60:163–180

    Article  CAS  Google Scholar 

  • Manley SL, Chapman DJ (1979) Metabolism of L-tyrosine to 4-hydroxybenzaldehyde and 3-bromo-4-hyrozybenzaldehyde by chloroplast-containing fractions of Odonthalia floccosa (Esp.) Falk. Plant Physiol 64:1322–1038

    Article  Google Scholar 

  • Marshall RA, Harper DB, McRoberts CW, Dring MJ (1999) Volatile bromocarbons produced by Falkenbergia stages of Asparagopsis spp. (Rhodophyta). Limnol Oceanogr 44:1348–1352

    Article  CAS  Google Scholar 

  • Matsuo Y, Imagawa H, Nishizawa M, Shizuri Y (2005) Isolation of an algal morphogenesis inducer from a marine bacterium. Science 307:1598

    Article  CAS  PubMed  Google Scholar 

  • Mukai LS, Craigie JS, Brown RG (1981) Chemical composition and structure of the cell walls of the conchocelis and thallus phase of Porphyra tenera (Rhodophyceae). J Phycol 17:192–198

    Article  CAS  Google Scholar 

  • Nakamura Y, Sasaki N, Kobayashi M, Ojima N, Yasuike M, Shigenobu Y, Satomi M, Fukuma Y, Shiwaku K, Tsujimoto A, Kobayashi T, Nakayama I, Ito F, Nakajima K, Sano M, Wada T, Kuhara S, Inouye K, Gojobori T, Ikeo K (2013) The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis). PLoS One 8:e57122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nightingale PD, Malin G, Liss PS (1995) Production of chloroform and other low molecular weight halocarbons by some species of macroalgae. Limnol Oceanogr 40:680–689

    Article  CAS  Google Scholar 

  • Nikaido I, Asamizu E, Nakajima M, Nakamura Y, Saga N, Tabata S (2000) Generation of 10,154 expressed sequence tags from a leafy gametophyte of a marine red alga, Porphyra yezoensis. DNA Res 7:223–227

    Article  PubMed  Google Scholar 

  • Nozaki Y (2001) An overview. In: Steele J, Thorpe S, Turekian KK (eds) Elemental distribution in the ocean in encyclopedia of ocean sciences, vol 2. Academic Press, London, pp 840–845

    Chapter  Google Scholar 

  • Ohsawa N, Ogata Y, Okada N, Itoh N (2001) Physiological function of bromoperoxidase in the red marine alga, Corallina pilulifera: production of bromoform as an allelochemical and the simultaneous elimination of hydrogen peroxide. Phytochemistry 58:683–692

    Article  CAS  PubMed  Google Scholar 

  • Ohshiro T, Littlechild J, Garcia-Rodriguez E, Isupov MN, Lida Y, Kobayashi T, Isumi Y (2004) Modification of halogen specificity of a vanadium-dependent bromoperoxidase. Protein Sci 13:1566–1571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paul N, de Nys R, Steinberg P (2006) Chemical defence against bacteria in the red alga Asparagopsis armata: linking structure with function. Mar Ecol Prog Ser 306:87–101

    Article  CAS  Google Scholar 

  • Ritter A, Ubertini M, Romac S, Gaillard F, Delage L, Mann A, Cock JM, Tonon T, Correa JA, Potin P (2010) Copper stress proteomics highlights local adaptation of two strains of the model brown alga Ectocarpus siliculosus. Proteomics 10:2074–2088

    Article  CAS  PubMed  Google Scholar 

  • Saga N (2012) Porphyra: model plants in marine sciences. In: Mikami K (ed) Porphyra yezoensis: frontiers in physiological and molecular biological research. Nova, Inc, New York, pp 1–14

    Google Scholar 

  • Sandy M, Carter-Franklin JN, Martin JD, Butler A (2011) Vanadium bromoperoxidase from Delisea pulchra: enzyme-catalyzed formation of bromofuranone and attendant disruption of quorum sensing. Chem Commun 47:12086–12088

    Article  CAS  Google Scholar 

  • Shimonishi M, Kuwamoto S, Inoue H, Wever R, Ohshiro T, Izumi Y, Tanabe T (1998) Cloning and expression of the gene for a vanadium-dependent bromoperoxidase from a marine macro-alga, Corallina pilulifera. FEBS Lett 428:105–110

    Article  CAS  PubMed  Google Scholar 

  • Shin ES, Hwang HJ, Kim IH, Nam TJ (2011) A glycoprotein from Porphyra yezoensis produces anti-inflammatory effects in liposaccharide-stimulated macrophages via the TLR4 signaling pathway. Int J Mol Med 28:809–815

    CAS  PubMed  Google Scholar 

  • Soedjak HS, Walker JV, Butler A (1995) Inhibition and inactivation of vanadium bromoperoxidase by the substrate hydrogen peroxide and further mechanistic studies. Biochemistry 34:12689–12696

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Takio S, Satoh T (1998) Light dependent expression in liverwort cells of chl/N and chlB identified as chloroplast genes involved in chlorophyll synthesis in the dark. J Plant Physiol 152:31–37

    Article  CAS  Google Scholar 

  • Theiler R, Cock JC, Hager LP, Siuda JF (1978) Halohydrocarbon synthesis by bromoperoxidase. Science 202:1094–1096

    Article  CAS  PubMed  Google Scholar 

  • Uji T, Hirata R, Mikami K, Mizuta H, Saga N (2012) Molecular characterization and expression analysis of sodium pump genes in the marine red alga Porphyra yezoensis. Mol Biol Rep 39:7973–7980

    Article  CAS  PubMed  Google Scholar 

  • Uji T, Mizuta H, Saga N (2013) Characterization of the sporophyte-preferential gene promoter from the red alga Porphyra yezoensis using transient gene expression. Mar Biotechnol 15:188–196

    Article  CAS  PubMed  Google Scholar 

  • Weinberger F, Coquempot B, Forner S, Morin P, Kloareg B, Potin P (2007) Different regulation of haloperoxidation during agar oligosaccharide-activated defence mechanisms in two related red algae, Gracilaria sp. and Gracilaria chilensis. J Exp Bot 58:4365–4372

    Article  CAS  PubMed  Google Scholar 

  • Winter JM, Moore BS (2009) Exploring the chemistry and biology of vanadium-dependent haloperoxidase. J Biol Chem 284:18577–18580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wischang D, Radlow M, Schulz H, Vilter H, Viehweger L, Altmeyer MO, Kegler C, Herrmann J, Müller R, Gaillard F, Delage L, Leblanc C, Hartung J (2012) Molecular cloning, structure, and reactivity of the second bromoperoxidase from Ascophyllum nodosum. Bioorg Chem 44:25–34

    Article  CAS  PubMed  Google Scholar 

  • Yamada H, Itoh N, Murakami S, Izumi Y (1985) New bromoperoxidase from coralline algae that brominates phenol compounds. Agric Biol Chem 49:2961–2967

    Article  CAS  Google Scholar 

  • Yoshizawa Y, Ametani A, Tsunehiro J, Nomura K, Itoh M, Fukui F, Kaminogawa S (1995) Macrophage stimulation activity of the polysaccharide fraction from a marine alga (Porphyra yezoensis): structure-function relationships and improved solubility. Biosci Biotechnol Biochem 59:1933–1937

    Article  CAS  PubMed  Google Scholar 

  • Yotsukura N, Nagai K, Tanaka T, Kimura H, Morimoto K (2012) Temperature stress-induced changes in the proteomic profiles of Ecklonia cava (Laminariales, Phaeophyceae). J Appl Phycol 24:163–171

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Naotsune Saga of Hokkaido University, Japan, for providing the gametophyte and sporophytes of P. yezoensis. This work was supported by Grants-in-Aid for Scientific Research on Priority Areas (to S.T.) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and from the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN, to H.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Takio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuda, R., Ozgur, R., Higashi, Y. et al. Preferential Expression of a Bromoperoxidase in Sporophytes of a Red Alga, Pyropia yezoensis . Mar Biotechnol 17, 199–210 (2015). https://doi.org/10.1007/s10126-014-9608-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-014-9608-6

Keywords

Navigation