Skip to main content
Log in

Ran and Calcineurin Can Participate Collaboratively in the Regulation of Spermatogenesis in Scallop

Marine Biotechnology Aims and scope Submit manuscript

Abstract

Calcineurin is a calcium/calmodulin-dependent protein phosphatase that plays important roles in the transduction of calcium signals in a variety of tissues. In addition, calcineurin has been implicated in the process of spermatogenesis. A novel calcineurin-binding protein, CaNBP75, has been identified in scallop testis. The C-terminal region of CaNBP75 is homologous to the C-terminal region of RanBP3, a Ran-binding domain-containing protein. A small G protein Ran has been involved in spermiogenesis by virtue of the fact that its localization in spermatids changes during spermiogenesis. The current study was performed to investigate the functions of Ran and CaNBP75 in the regulation of calcineurin in testis to further understand the basic functions of calcineurin during spermatogenesis. First, cloning and sequencing of a scallop Ran cDNA isolated from testis revealed that scallop Ran is well-conserved at the amino acid level. Secondly, direct binding of Ran to CaNBP75 was demonstrated in an in vitro pull-down assay. Thirdly, analysis of the tissue distribution of Ran, CaNBP75, and calcineurin showed that these proteins are abundantly expressed in testis. Fourthly, comparison of the expression profiles of Ran and CaNBP75 with that of calcineurin in scallop testis during the maturation cycle revealed that Ran and CaNBP75 mRNA levels increase during meiosis and spermiogenesis, similar to calcineurin. Finally, co-immunoprecipitation analysis suggests that Ran, CaNBP75, and calcineurin interact in scallop testis during maturation. These results suggest that Ran, CaNBP75, and calcineurin may act in a coordinated manner to regulate spermatogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Avrameas S, Ternynck T (1971) Peroxidase labelled antibody and Fab conjugates with enhanced intracellular penetration. Immunochemistry 8:1175–1179

    Article  PubMed  CAS  Google Scholar 

  • Bischoff FR, Ponstingl H (1995) Catalysis of guanine nucleotide exchange of Ran by RCC1 and stimulation of hydrolysis of Ran-bound GTP by Ran-GAP1. Methods Enzymol 257:135–144

    Article  PubMed  CAS  Google Scholar 

  • Bompard G, Rabeharivelo G, Frank M, Cau J, Delsert C, Morin N (2010) Subgroup II PAK-mediated phosphorylation regulates Ran activity during mitosis. J Cell Biol 190:807–822

    Article  PubMed  CAS  Google Scholar 

  • Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, Wu H, Zhu W, Bassel-Duby R, Williams RS (1998) A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 12:2499–2509

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Clipstone NA, Crabtree GR (1992) Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature 357:695–697

    Article  PubMed  CAS  Google Scholar 

  • Coutavas EE, Hsieh CM, Ren M, Drivas GT, Rush MG, D’Eustachio PD (1994) Tissue-specific expression of Ran isoforms in the mouse. Mamm Genome 5:623–628

    Article  PubMed  CAS  Google Scholar 

  • Dell’Acqua ML, Smith KE, Gorski JA, Horne EA, Gibson ES, Gomez LL (2006) Regulation of neuronal PKA signaling through AKAP targeting dynamics. Eur J Cell Biol 85:627–633

    Article  PubMed  Google Scholar 

  • Donella-Deana A, Krinks MH, Ruzzene M, Klee C, Pinna LA (1994) Dephosphorylation of phosphopeptides by calcineurin (protein phosphatase 2B). Eur J Biochem 219:109–117

    Article  PubMed  CAS  Google Scholar 

  • Drivas GT, Shih A, Coutavas E, Rush MG, D’Eustachio P (1990) Characterization of four novel ras-like genes expressed in a human teratocarcinoma cell line. Mol Cell Biol 10:1793–1798

    PubMed  CAS  Google Scholar 

  • El-Armouche A, Bednorz A, Pamminger T, Ditz D, Didie M, Dobrev D, Eschenhagen T (2006) Role of calcineurin and protein phosphatase-2A in the regulation of phosphatase inhibitor-1 in cardiac myocytes. Biochem Biophys Res Commun 346:700–706

    Article  PubMed  CAS  Google Scholar 

  • Feske S, Okamura H, Hogan PG, Rao A (2003) Ca2+/calcineurin signalling in cells of the immune system. Biochem Biophys Res Commun 311:1117–1132

    Article  PubMed  CAS  Google Scholar 

  • Friday BB, Horsley V, Pavlath GK (2000) Calcineurin activity is required for the initiation of skeletal muscle differentiation. J Cell Biol 149:657–666

    Article  PubMed  CAS  Google Scholar 

  • Görlich D (1998) Transport into and out of the cell nucleus. EMBO J 17:2721–2727

    Article  PubMed  Google Scholar 

  • Kalab P, Pu RT, Dasso M (1999) The Ran GTPase regulates mitotic spindle assembly. Curr Biol 9:481–484

    Article  PubMed  CAS  Google Scholar 

  • Kierszenbaum AL, Gil M, Rivkin E, Tres LL (2002) Ran, a GTP-binding protein involved in nucleocytoplasmic transport and microtubule nucleation, relocates from the manchette to the centrosome region during rat spermiogenesis. Mol Reprod Dev 63:131–140

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa C, Nakatomi A, Hwang D, Osaka I, Fujimori H, Kawasaki H, Arakawa R, Murakami Y, Ohki S (2011) Roles of the C-terminal residues of calmodulin in structure and function. Biophysics 7:35–49

    Article  CAS  Google Scholar 

  • Klee CB, Ren H, Wang X (1998) Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem 273:13367–13370

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Yoshida M, Shinoda Y, Yazawa M, Yagi K (1991) Monoclonal antibodies toward scallop (Patinopecten yessoensis) testis and wheat germ calmodulins. J Biochem 109:551–558

    PubMed  CAS  Google Scholar 

  • Lindsay ME, Holaska JM, Welch K, Paschal BM, Macara IG (2001) Ran-binding protein 3 is a cofactor for Crm1-mediated nuclear protein export. J Cell Biol 153:1391–1402

    Article  PubMed  CAS  Google Scholar 

  • López-Casas PP, López-Fernández LA, Párraga M, Krimer DB, del Mazo J (2003) Developmental regulation of expression of Ran/M1 and Ran/M2 isoforms of Ran-GTPase in mouse testis. Int J Dev Biol 47:307–310

    PubMed  Google Scholar 

  • Mansuy IM, Mayford M, Jacob B, Kandel ER, Bach ME (1998) Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell 92:39–49

    Article  PubMed  CAS  Google Scholar 

  • Maru K (1976) Studies on the reproduction of a scallop, Patinopecten yessoensis (JAY)-1. Reproductive cycle of the cultured scallop. Sci Rep Hokkaido Fish Exp Stn 18:9–26

    Google Scholar 

  • Milburn MV, Tong L, deVos AM, Brünger A, Yamaizumi Z, Nishimura S, Kim SH (1990) Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247:939–945

    Article  PubMed  CAS  Google Scholar 

  • Mochida S, Hunt T (2007) Calcineurin is required to release Xenopus egg extracts from meiotic M phase. Nature 449:336–340

    Article  PubMed  CAS  Google Scholar 

  • Moriya M, Fujinaga K, Yazawa M, Katagiri C (1995) Immunohistochemical localization of the calcium/calmodulin-dependent protein phosphatase, calcineurin, in the mouse testis: its unique accumulation in spermatid nuclei. Cell Tissue Res 281:273–281

    Article  PubMed  CAS  Google Scholar 

  • Mueller L, Cordes VC, Bischoff FR, Ponstingl H (1998) Human RanBP3, a group of nuclear RanGTP binding proteins. FEBS Lett 427:330–336

    Article  PubMed  CAS  Google Scholar 

  • Mulkey RM, Endo S, Shenolikar S, Malenka RC (1994) Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369:486–488

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu T, Giri PR, Higuchi S, Kincaid RL (1992) Molecular cloning of a calmodulin-dependent phosphatase from murine testis: identification of a developmentally expressed nonneural isoenzyme. Proc Natl Acad Sci USA 89:529–533

    Article  PubMed  CAS  Google Scholar 

  • Nakatomi A, Yazawa M (2003) Identification and characterization of a novel calcineurin-binding protein in scallop testis. J Biochem 133:159–164

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama T, Yoshizaki N, Kishimoto T, Ohsumi K (2007) Transient activation of calcineurin is essential to initiate embryonic development in Xenopus laevis. Nature 449:341–345

    Article  PubMed  CAS  Google Scholar 

  • Nozawa RS, Nagao K, Masuda HT, Iwasaki O, Hirota T, Nozaki N, Kimura H, Obuse C (2010) Human POGZ modulates dissociation of HP1alpha from mitotic chromosome arms through Aurora B activation. Nat Cell Biol 12:719–727

    Article  PubMed  CAS  Google Scholar 

  • Scheffzek K, Klebe C, Fritz-Wolf K, Kabsch W, Wittinghofer A (1995) Crystal structure of the nuclear Ras-related protein Ran in its GDP-bound form. Nature 374:378–381

    Article  PubMed  CAS  Google Scholar 

  • Stewart AA, Ingebritsen TS, Manalan A, Klee CB, Cohen P (1982) Discovery of a Ca2+- and calmodulin-dependent protein phosphatase: probable identity with calcineurin (CaM-BP80). FEBS Lett 137:80–84

    Article  PubMed  CAS  Google Scholar 

  • Su Q, Zhao M, Weber E, Eugster HP, Ryffel B (1995) Distribution and activity of calcineurin in rat tissues. Evidence for post-transcriptional regulation of testis-specific calcineurin B. Eur J Biochem 230:469–474

    Article  PubMed  CAS  Google Scholar 

  • Suntharalingam M, Wente SR (2003) Peering through the pore: nuclear pore complex structure, assembly, and function. Dev Cell 4:775–789

    Article  PubMed  CAS  Google Scholar 

  • Talian JC, Olmsted JB, Goldman RD (1983) A rapid procedure for preparing fluorescein-labeled specific antibodies from whole antiserum: its use in analyzing cytoskeletal architecture. J Cell Biol 97:1277–1282

    Article  PubMed  CAS  Google Scholar 

  • Tash JS, Krinks M, Patel J, Means RL, Klee CB, Means AR (1988) Identification, characterization, and functional correlation of calmodulin-dependent protein phosphatase in sperm. J Cell Biol 106:1625–1633

    Article  PubMed  CAS  Google Scholar 

  • Uryu M, Nakatomi A, Watanabe M, Hatsuse R, Yazawa M (2000) Molecular cloning of cDNA encoding two subunits of calcineurin from scallop testis: demonstration of stage-specific expression during maturation of the testis. J Biochem 127:739–746

    Article  PubMed  CAS  Google Scholar 

  • Vetter IR, Nowak C, Nishimoto T, Kuhlmann J, Wittinghofer A (1999) Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. Nature 398:39–46

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Wu X, Du M (2011) Identification and expression localization of a Ran homologue in mollusc abalone, Haliotis diversicolor supertexta. Fish Shellfish Immunol 30:986–991

    Article  PubMed  CAS  Google Scholar 

  • Yokoya F, Imamoto N, Tachibana T, Yoneda Y (1999) β-Catenin can be transported into the nucleus in a Ran-unassisted manner. Mol Biol Cell 10:1119–1131

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Global COE Program (Project No. B01: Catalysis as the Basis for Innovation in Materials Science) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors wish to thank Dr. Shunji Kaya (Faculty of Science, Hokkaido University) for using DNA sequencing system; Prof. Chikashi Obuse, Ms. Natsuko Sirai, Ms. Sachiko Shibata, and Dr. Koji Nagao (Faculty of Advanced Life Science, Hokkaido University) for analysis of mass spectrometry; and Dr. Hajime J. Yuasa (Faculty of Science, Kochi University) for the fruitful discussion and the precise advice.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yota Murakami or Akiko Nakatomi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hino, H., Arimoto, K., Yazawa, M. et al. Ran and Calcineurin Can Participate Collaboratively in the Regulation of Spermatogenesis in Scallop. Mar Biotechnol 14, 479–490 (2012). https://doi.org/10.1007/s10126-011-9429-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-011-9429-9

Keywords

Navigation