Skip to main content

Advertisement

Log in

Investigation of Phosphorylation Site Responsible for CaLP (P. fucata) Nucleo-cytoplasmic Shuttling Triggered by Overexpression of p21Cip1

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Calmodulin (CaM) is a highly conserved and ubiquitous Ca2+-binding protein regulating intracellular Ca2+ concentration by acting as a sensor of this divalent cation in eukaryotic cells. Being such a very important signal sensor, CaM is susceptible to undergo many posttranslational modifications. One of these important modifications is its phosphorylation. Our previous investigations showed that CaM and calmodulin-like protein (CaLP) cloned from Pinctada fucata have many different characteristics in spite of their high similarity to each other. We have narrowed down that the C-terminal domains of CaM and CaLP are responsible for their discrepant subcellular localizations and shuttling of CaLP when it is co-transfected with p21Cip1, which is commonly considered as an important cell cycle regulating protein. In this study, we first predicted the potential phosphorylation site responsible for the shuttling and confirmed by fluorescence confocal microscopy. Together with fluorescence activated cell sorter analysis, we further investigated the releasing ability of wild type and point mutated CaLP from arrested cell cycle caused by p21Cip1 overexpression. By performing pull-down analysis and phosphorylation status of CaLP in cytoplasm fraction of transfected COS-7 cells with CaLP alone and phosphorylation status of CaLP in nuclear fraction of co-transfected COS-7 cells with CaLP and p21Cip, we propose that the CaLP staying in the cytoplasm is in the state of phosphorylation, but when p21Cip1 is overexpressed in mammalian cells, some signal triggers CaLP dephosphorylation and translocation into the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agell N, Aligue R, Alemany V, Castro A, Jaime M, Pujol MJ, Rius E, Serratosa J, Taules M, Bachs O (1998) New nuclear functions for calmodulin. Cell Calcium 23:115–121

    Article  PubMed  CAS  Google Scholar 

  • Agell N, Bachs O, Rocamora N, Villalonga P (2002) Modulation of the Ras/Raf/MEK/ERK pathway by Ca(2+) and calmodulin. Cell Signal 14:649–654

    Article  PubMed  CAS  Google Scholar 

  • Agell N, Jaumot M, Rodríguez-Vilarrupla A, Brun S, Abella N, Canela N, Estanyol JM, Bachs O (2006) The diverging roles of calmodulin and PKC in the regulation of p21 intracellular localization. Cell Cycle 5:3–6

    PubMed  CAS  Google Scholar 

  • Beirer S, Höfer T (2006) Control of signal transduction cycles: general results and application to the Jak-Stat pathway. Genome Inform 17:152–162

    PubMed  CAS  Google Scholar 

  • Benaim G, Villalobo A (2002) Phosphorylation of calmodulin: functional implications. Eur J Biochem 269:3619–3631

    Article  PubMed  CAS  Google Scholar 

  • Benaim G, Cervino V, Villalobo A (1998) Comparative phosphorylation of calmodulin from trypanosomatids and bovine brain by calmodulin-binding protein kinases. Comp Biochem Phys Part C 120:57–65

    Article  CAS  Google Scholar 

  • Benguría A, Hernández-Perera O, Martínez-Pastor MT, Sacks DB, Villalobo A (1994) Phosphorylation of calmodulin by the epidermal-growth-factor-receptor tyrosine kinase. Eur J Biochem 224:909–916

    Article  PubMed  Google Scholar 

  • Blenis J, Resh MD (1993) Subcellular localization specified by protein acylation and phosphorylation. Curr Opin Cell Biol 5:984–989

    Article  PubMed  CAS  Google Scholar 

  • Brostrom CO, Huang YC, Breckenridge BM, Wolff DJ (1975) Identification of a calcium-binding protein as a calcium-dependent regulator of brain adenylate cyclase. Proc Natl Acad Sci U S A 72:64–68

    Article  PubMed  CAS  Google Scholar 

  • Chafouleas JG, Lagace L, Bolton WE, Boyd AE III, Means AR (1984) Changes in calmodulin and its mRNA accompany reentry of quiescent (G0) cells into the cell cycle. Cell 36:73–81

    Article  PubMed  CAS  Google Scholar 

  • Cheung WY (1980) Calmodulin plays a pivotal role in cellular regulation. Science 207:19–27

    Article  PubMed  CAS  Google Scholar 

  • Corti C, Hostis EL-L, Quadroni M, Schmid H, Durusel I, Cox J, Hatt PD, James P, Carafoli E (1999) Tyrosine phosphorylation modulates the interaction of calmodulin with its target proteins. Eur J Biochem 262:790–802

    Article  PubMed  CAS  Google Scholar 

  • Davis HW, Crimmins DL, Thoma RS, Garcia JGN (1996) Phosphorylation of calmodulin in the first calcium-binding pocket by myosin light chain kinase. Arch Biochem Biophys 332:101–109

    Article  PubMed  CAS  Google Scholar 

  • Fang Z, Cao W, Li S, Xie L, Zhang R (2008a) Significance of the C-terminal globular domain and extra tail of calmodulin-like protein (Pinctada fucata) in subcellular localization and protein–protein interaction. Cell Biol Int 32:920–927

    Article  PubMed  CAS  Google Scholar 

  • Fang Z, Yan ZG, Li S, Wang Q, Cao WZ, Xu GR, Xiong XH, Xie LP, Zhang RQ (2008b) Localization of calmodulin and calmodulin-like protein and their functions in biomineralization in P. fucata. Prog Nat Sci 18:405–412

    Article  CAS  Google Scholar 

  • Fukami Y, Nakamura T, Nakayama A, Kanehisa T (1986) Phosphorylation of tyrosine residues of calmodulin in Rous sarcoma virus-transformed cells. Proc Natl Acad Sci U S A 83:4190–4193

    Article  PubMed  CAS  Google Scholar 

  • Graves CB, Gale RD, Laurino JP, McDonald JM (1986) The insulin receptor and calmodulin: calmodulin enhances insulin-mediated receptor kinase activity and insulin stimulates phosphorylation of calmodulin. J Biol Chem 261:10429–10438

    PubMed  CAS  Google Scholar 

  • Haring HU, White MF, Kahn CR, Ahmad Z, DePaoli-Roach AA, Roach PJ (1985) Interaction of the insulin receptor kinase with serine/threonine kinases in vitro. J Cell Biochem 28:171–182

    Article  PubMed  CAS  Google Scholar 

  • Ikura M (1996) Calcium binding and conformational response in EF-hand proteins. Trends Biochem Sci 21:14–17

    PubMed  CAS  Google Scholar 

  • José ES, Benguría A, Geller P, Villalobo A (1992) Calmodulin inhibits the epidermal growth factor receptor tyrosine kinase. J Biol Chem 267:15237–15245

    Google Scholar 

  • Joyal JL, Crimmins DL, Thoma RS, Sacks DB (1996) Identification of insulin-stimulated phosphorylation sites on calmodulin. Biochemistry 35:6267–6275

    Article  PubMed  CAS  Google Scholar 

  • Kahl CR, Means AR (2003) Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev 24:719–736

    Article  PubMed  CAS  Google Scholar 

  • Leclerc E, Corti C, Schmid H, Vetter S, James P, Carafoli E (1999) Serine/threonine phosphorylation of calmodulin modulates its interaction with the binding domains of target enzymes. Biochem J 344:403–411

    Article  PubMed  CAS  Google Scholar 

  • Li S, Xie L, Zhang C, Zhang Y, Gu M, Zhang R (2004) Cloning and expression of a pivotal calcium metabolism regulator: calmodulin involved in shell formation from pearl oyster (Pinctada fucata). Comp Biochem Phys B 138:235–243

    Article  CAS  Google Scholar 

  • Li S, Xie L, Ma Z, Zhang R (2005) cDNA cloning and characterization of a novel calmodulin-like protein from pearl oyster Pinctada fucata. FEBS J 272:4899–4910

    Article  PubMed  CAS  Google Scholar 

  • Li S, Xie L, Meng Q, Zhang R (2006) Significance of the extra C-terminal tail of CaLP, a novel calmodulin-like protein involved in oyster calcium metabolism. Comp Biochem Phys B 144:463–471

    Article  CAS  Google Scholar 

  • Means AR (2000) Regulatory cascades involving calmodulin-dependent protein kinases. Mol Endocrinol 14:4–13

    Article  PubMed  CAS  Google Scholar 

  • Means AR, Dedman JR (1980) Calmodulin—an intracellular calcium receptor. Nature 285:73–77

    Article  PubMed  CAS  Google Scholar 

  • Meggio F, Brunati AM, Pinna LA (1987) Polycation-dependent, Ca2+-antagonized phosphorylation of calmodulin by casein kinase-2 and spleen tyrosine protein kinase. FEBS Lett 215:241–246

    Article  PubMed  CAS  Google Scholar 

  • Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134

    Article  PubMed  CAS  Google Scholar 

  • Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291

    Article  PubMed  CAS  Google Scholar 

  • Morgan DO, Fisher RP, Espinoza FH, Farrell A, Nourse J, Chamberlin H, Jin P (1998) Control of eukaryotic cell cycle progression by phosphorylation of cyclin-dependent kinases. Cancer J Sci Am 4(Suppl 1):S77–S83

    PubMed  Google Scholar 

  • Mukhin YV, Vlasova T, Jaffa AA, Collinsworth G, Bell JL, Tholanikunnel BG, Pettus T, Fitzgibbon W, Ploth DW, Raymond JR, Garnovskaya MN (2001) Bradykinin B2 receptors activate Na+/H+ exchange in mIMCD-3 cells via Janus kinase 2 and Ca2+/calmodulin. J Biol Chem 276:17339–17346

    Article  PubMed  CAS  Google Scholar 

  • Nakajo S, Masuda Y, Nakaya K, Nakamura Y (1988) Determination of the phosphorylation sites of calmodulin catalyzed by casein kinase 2. J Biochem 104:946–951

    PubMed  CAS  Google Scholar 

  • Obenauer JC, Cantley LC, Yaffe MB (2003) Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31:3635–3641

    Article  PubMed  CAS  Google Scholar 

  • Palomo-Jiménez PI, Hernández-Hernando S, García-Nieto RM, Villalobo A (1999) A method for the purification of phosphor (Tyr) calmodulin free of non-phosphorylated calmodulin. Prot Exp Purif 16:388–395

    Article  Google Scholar 

  • Plancke YD, Lazarides E (1983) Evidence for a phosphorylated form of calmodulin in chicken brain and muscle. Mol Cell Biol 3:1412–1420

    PubMed  CAS  Google Scholar 

  • Quadroni M, James P, Carafoli E (1994) Isolation of phosphorylated calmodulin from rat liver and identification of the in vivo phosphorylation sites. J Biol Chem 269:16116–16122

    PubMed  CAS  Google Scholar 

  • Rodríguez-Vilarrupla A, Jaumot M, Abella N, Canela N, Brun S, Díaz C, Estanyol JM, Bachs O, Agell N (2005) Binding of calmodulin to the carboxy-terminal region of p21 induces nuclear accumulation via inhibition of protein kinase C-mediated phosphorylation of Ser153. Mol Cell Biol 25:7364–7374

    Article  PubMed  CAS  Google Scholar 

  • Sacks DB, Davis HW, Crimmins DL, McDonald JM (1992) Insulin-stimulated phosphorylation of calmodulin. Biochem J 286:211–216

    PubMed  CAS  Google Scholar 

  • Saville MK, Houslay MD (1994) Phosphorylation of calmodulin on Tyr99 selectively attenuates the action of calmodulin antagonists on type-I cyclic nucleotide phosphodiesterase activity. Biochem J 299:863–868

    PubMed  CAS  Google Scholar 

  • Shinmura K, Tarapore P, Tokuyama YK, George KF (2005) Characterization of centrosomal association of nucleophosmin/B23 linked to Crm1 activity. FEBS Lett 579:6621–6634

    Article  PubMed  CAS  Google Scholar 

  • Taules M, Rius E, Talaya D, Lopez GA, Bachs O, Agell N (1998) Calmodulin is essential for cyclin-dependent kinase 4 (Cdk4) activity and nuclear accumulation of cyclin D1-Cdk4 during G1. J Biol Chem 273:33279–33286

    Article  PubMed  CAS  Google Scholar 

  • Taulés M, Rodríguez-Vilarrupla A, Rius E, Estanyol JM, Casanovas O, Sacks DB, Pérez-Payái E, Bachs O, Agell N (1999) Calmodulin binds to p21Cip1 and is involved in the regulation of its nuclear localization. J Biol Chem 274:24445–24448

    Article  PubMed  Google Scholar 

  • Tedesco D, Lukas J, Reed SI (2002) The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCFSkp2. Genes Dev 16:2946–2957

    Article  PubMed  CAS  Google Scholar 

  • Umahara M, Okada S, Yamada E, Saito T, Ohshima K, Hashimoto K, Yamada M, Shimizu H, Pessin JE, Mori M (2008) Tyrosine phosphorylation of Munc18c regulates platelet-derived growth factor-stimulated glucose transporter 4 translocation in 3T3L1 adipocytes. Endocrinology 149:40–49

    Article  PubMed  CAS  Google Scholar 

  • Weinstein H, Mehler EL (1994) Ca2+-binding and structural dynamics in the functions of calmodulin. Annu Rev Physiol 56:213–236

    PubMed  CAS  Google Scholar 

  • Williams JP, Jo H, Sacks DB, Crimmins DL, Thoma RS, Hunnicutt RE, Radding W, Sharma RK, McDonald JM (1994) Tyrosine-phosphorylated calmodulin has reduced biological activity. Arch Biochem Biophys 315:119–126

    Article  PubMed  CAS  Google Scholar 

  • Wolff DJ, Brostrom CO (1974) Calcium-binding phosphoprotein from pig brain: identification as a calcium-dependent regulator of brain cyclic nucleotide phosphodiesterase. Arch Biochem Biophys 163:349–358

    Article  PubMed  CAS  Google Scholar 

  • Wong ECC, Sacks DB, Laurino JP, McDonald JM (1988) Characteristics of calmodulin phosphorylated by the insulin receptor kinase. Endocrinology 123:1830–1836

    Article  PubMed  CAS  Google Scholar 

  • Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC (2001) Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol 3:245–252

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National High Technology Research and Development Program of China (2006AA09Z413, 2006AA09Z441, 2006AA10A415) and the National Natural Science Foundation of China (no. 30530600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, Z., Wang, Q., Cao, W. et al. Investigation of Phosphorylation Site Responsible for CaLP (P. fucata) Nucleo-cytoplasmic Shuttling Triggered by Overexpression of p21Cip1 . Mar Biotechnol 11, 270–279 (2009). https://doi.org/10.1007/s10126-008-9142-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-008-9142-5

Keywords

Navigation