Skip to main content
Log in

Characterization of the biosurfactant production and enzymatic potential of bacteria isolated from an oil-contaminated saline soil

  • Research
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Biosurfactants are amphiphilic compounds with extensive applications in oily contaminated environments to remove hydrocarbons. Moreover, enzymes such as laccase and manganese peroxidase are responsible for the oxidation of a variety of phenolic compounds and aromatic amines. Therefore, in the present study, bacteria with the potential to produce biosurfactants and enzymes (namely, laccase, manganese peroxidase, and endoglucanase carboxymethyl cellulose (CMCase)) were isolated from petroleum oil-contaminated soil. From 15 isolated bacteria, three isolates were selected as the best producers of biosurfactants according to the related tests, such as tests for surface tension reduction. These three bacteria indicated tolerance to a salinity test and were classified as resistant and very resistant. The isolates 3, 12, 13, and 14 showed positive results for the degradation of guaiacol, phenol red, and carboxymethylcellulose, as well as the decoloration of methylene blue by the creation of a clear halo around the bacterial colony. Upon the quantitation of the laccase and manganese peroxidase activities, 22.58 U/L and 21.81 U/L, respectively, were measured by isolate 13. Furthermore, CMCase activity was recorded with 0.057436 U/ml belonging to isolate 14. Bacterial strains with appreciable laccase, peroxidase, CMCase activity, and biosurfactant production potentials were identified through 16S rDNA sequence analysis as Bacillus sp. (isolate 3), Bacillus toyonensis (isolate 12), Bacillus cereus (isolate 13), and Bacillus tropicus (isolate 14), and their nucleotide sequences were deposited in the GenBank. The potentials for the industrial applicability of the biosurfactants and enzymes abound, and production needs to be optimized by the selected bacterial strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ECe:

Electrical conductivity (EC) of a saturated soil paste extract

TPHs:

Total petroleum hydrocarbons

CTAB:

Cetyl trimethyl ammonium bromide

MSM:

Minimal salt medium

CFS:

Cell-free supernatant

MnP:

Manganese peroxidase

DNS:

3,5-Dinitrosalicylic acid

ABTS:

2,2′-Azino-bis 3-ethylbenzothiazoline-6-sulfonic acid

References

  • Abbasnezhad H, Gray M, Foght JM (2011) Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons. Appl Microbiol Biotechnol 92:653–675

    Article  CAS  PubMed  Google Scholar 

  • Bodour AA, Maier RM (1998) Application of a modified dropcollapse technique for surfactant quantification and screening of biosurfactant-producing microorganisms. J Microbiol Methods 32:273–280

    Article  CAS  Google Scholar 

  • Cappicino JG, Sherman N (1998) Microbiology: a laboratory manual, The Benjamin Cummings publishinig company, INC.39. Bridge parkway Redwood City, California, 94065

  • Chandra R, Singh R (2012) Decolourisation and detoxification of rayon grade pulp paper mill effluent by mixed bacterial culture isolated from pulp paper mill effluent polluted site. Biochem Eng J 61:49–58

    Article  CAS  Google Scholar 

  • Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53(2):224–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dashti N, Salamah S, Khanafer M, Al-Shamy G, Al-Awadhi H, Radwan SS (2019) Culture-independent analysis of hydrocarbonoclastic bacterial communities in environmental samples during oil-bioremediation. Microbiology Open 8(2):e00630

    Article  PubMed  Google Scholar 

  • De Almeida DG, Soares DA, Silva RDCF, Luna JM, Rufino RD, Santos VA, Banat IM, Sarubbo LA (2016) Biosurfactants: promising molecules for petroleum biotechnology advances. Front Microbiol 7:1718

    Article  PubMed  PubMed Central  Google Scholar 

  • De Giani A, Zampolli J, Di Gennaro P (2021) Recent trends on biosurfactants with antimicrobial activity produced by bacteria associated with human health: different perspectives on their properties, challenges, and potential applications. Front Microbiol 12:655150

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng Z, Jiang Y, Chen K, Gao F, Liu X (2020) Petroleum depletion property and microbial community shift after bioremediation using Bacillus halotolerans T-04 and Bacillus cereus 1–1. Front Microbiol 11:353

    Article  PubMed  PubMed Central  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbial Mol Biol Rev 61:47–64

    CAS  Google Scholar 

  • Dhasayan A, Selvin J, Kiran S (2015) Biosurfactant production from marine bacteria associated with sponge Callyspongia diffusa. 3 Biotech 5(4):443–54

    Article  PubMed  Google Scholar 

  • Drakontis CE, Amin S (2020) Biosurfactants: formulations, properties, and applications. Curr Opin Colloid Interface Sci 48:77–90

    Article  CAS  Google Scholar 

  • D’Souza DT, Tiwari R, Sah AK, Raghukumar C (2006) Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzyme Microb Technol 38(3–4):504–511

    Article  CAS  Google Scholar 

  • Enayatzamir K, Alikhani HA, Couto SR (2009) Simultaneous production of laccase and decolouration of the diazo dye Reactive Black 5 in a fixed-bed bioreactor. J Hazard Mater 164(1):296–300

    Article  CAS  PubMed  Google Scholar 

  • Enayatzamir K, Alikhani HA, Yakhchali B, Tabandeh F, Rodríguez-Couto S (2010) Decolouration of azo dyes by Phanerochaete chrysosporium immobilised into alginate beads. Environ Sci Pollut Res 17(1):145–153

    Article  CAS  Google Scholar 

  • Falade AO, Eyisi OA, Mabinya LV, Nwodo UU, Okoh AI (2017) Peroxidase production and ligninolytic potentials of fresh water bacteria Raoultella ornithinolytica and Ensifer adhaerens. Biotechnol Rep 16:12–17

    Article  Google Scholar 

  • Ferradji FZ, Mnif S, Badis A, Rebbani S, Fodil D, Eddouaouda K et al (2014) Naphthalene and crude oil degradation by biosurfactant producing Streptomyces spp. isolated from Mitidja plain soil (North of Algeria). Int Biodeterior Biodegrad 86:300–308

    Article  CAS  Google Scholar 

  • Ferreira-Leitao VS, de Carvalho MEA, Bon EP (2007) Lignin peroxidase efficiency for methylene blue decolouration: comparison to reported methods. Dyes Pigm 74(1):230–236

    Article  CAS  Google Scholar 

  • Gayathiri E, Prakash P, Karmegam N, Varjani S, Awasthi MK, Ravindran B (2022) Biosurfactants: potential and eco-friendly material for sustainable agriculture and environmental safety-a review. Agronomy 12(3):662

    Article  CAS  Google Scholar 

  • Gudiña EJ, Fernandes EC, Rodrigues AI, Teixeira JA, Rodrigues LR (2015) Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Front Microbiol 6:59

    PubMed  PubMed Central  Google Scholar 

  • Hassanshahian M, Giti E, Simone C (2011) Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea. Mar Pollut Bull 64(1):7–12

    Article  PubMed  Google Scholar 

  • Hussain AA, Abdel-Salam MS, Abo-Ghalia HH, Hegazy WK, Hafez SS (2017) Optimization and molecular identification of novel cellulose degrading bacteria isolated from Egyptian environment. J Genet Eng Biotechnol 15(1):77–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibrahim HM (2018) Characterization of biosurfactants produced by novel strains of Ochrobactrum anthropi HM-1 and Citrobacter freundii HM-2 from used engine oil-contaminated soil. Egypt J Pet 27(1):21–29

    Article  Google Scholar 

  • Ibrahim ML, Ijah UJJ, Manga SB, Bilbis LS, Umar S (2013) Production and partial characterization of biosurfactant produced by crude oil degrading bacteria. Int Biodeterior Biodegrad 81:28–34

    Article  CAS  Google Scholar 

  • Joshi SJ, Al-Wahaibi YM, Al-Bahry SN, Elshafie AE, Al-Bemani AS, Al-Bahri A, Al-Mandhari MS (2016) Production, characterization, and application of Bacillus licheniformis W16 biosurfactant in enhancing oil recovery. Front Microbiol 7:1853

    Article  PubMed  PubMed Central  Google Scholar 

  • Joy S, Rahman PKSM, Sharma S (2017) Biosurfactant production and concomitant hydrocarbon degradation potentials of bacteria isolated from extreme and hydrocarbon contaminated environments. Chem Eng J 317:232–241

    Article  CAS  Google Scholar 

  • Kaczorek E, Pijanowska A, Olszanowski A (2008) Yeast and bacteria cell hydrophobicity and hydrocarbon biodegradation in the presence of natural surfactants: rhamnolipides and saponins. Bioresour Technol 99(10):4285–4291

    Article  CAS  PubMed  Google Scholar 

  • Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol 57(5):503–507

    Article  CAS  PubMed  Google Scholar 

  • Krasowska A, Sigler K (2014) How microorganisms use hydrophobicity and what does this mean for human needs? Front Cell Infect Microbiol 4:112

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Chandra R (2020) Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon 6(2):e03170

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of two extracelluar H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169(2):247–250

    Article  CAS  Google Scholar 

  • Liang YL, Zhang Z, Wu M, Wu Y, Feng JX (2014) Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27–1. BioMed Res Int 1–13

  • Lima JMS, Pereira JO, Batista IH, Junior RCP, dos Santos BH, Neto PDQC, Matsuura ABJ, de Castro FS, Azevedo JL (2017) Biosurfactants produced by Microbacterium sp, isolated from aquatic macrophytes in hydrocarbon-contaminated area in the Rio Negro, Manaus. Amazonas. Acta Scientiarum Biol Sci 39(1):13–20

    Article  CAS  Google Scholar 

  • Luo JC, Long H, Zhang J, Zhao Y, Sun L (2021) Characterization of a deep sea Bacillus toyonensis isolate: genomic and pathogenic features. Front Cell Infect Microbiol 11:107

    Article  Google Scholar 

  • Mandels M, Reese ET (1975) Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J Bacteriol 73(2):269–278

    Article  Google Scholar 

  • Mohammadipour Z, Enayatizamir N, Ghezelbash G, Moezzi A (2021) Bacterial diversity and chemical properties of wheat straw-based compost leachate and screening of cellulase producing bacteria. Waste Biomass Valorization 12(3):1293–1302

    Article  CAS  Google Scholar 

  • Mohanty S, Mukherji S (2012) Alteration in cell surface properties of Burkholderia spp. during surfactant-aided biodegradation of petroleum hydrocarbons. Appl Microbiol Biotechnol 94(1):193–204

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Kitamura K (1982) Isolation and identification of crystalline cellulose hydrolyzing bacterium and its enzymatic properties. J Ferment Technol 60(4):343–348

    CAS  Google Scholar 

  • Niku-Paavola ML, Raaska L, Itävaara M (1990) Detection of white-rot fungi by a non-toxic stain. Mycol Res 94:27–31

    Article  Google Scholar 

  • Noparat P, Maneerat S, Saimmai A (2014) Application of biosurfactant from Sphingobacterium spiritivorum AS43 in the biodegradation of used lubricating oil. Appl Biochem Biotechnol 172:3949–3969

    Article  CAS  PubMed  Google Scholar 

  • Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12(1):633–654

    Article  PubMed  PubMed Central  Google Scholar 

  • Pang R, Li M, Zhang C (2015) Degradation of phenolic compounds by laccase immobilized on carbon nanomaterials: diffusional limitation investigation. Talanta 131:38–45

    Article  CAS  PubMed  Google Scholar 

  • Peixoto FBS, da Cunha Peixoto JC, Motta DCL, Peixoto ATM, Pereira JO, Astolfi-Filho S (2018) Assessment of petroleum biodegradation for Bacillus toyonensis by the using redox indicator 2, 6 dichlorophenol indophenol. Acta Scientiarum J Biol Sci 40:e35640–e35640

    Article  Google Scholar 

  • Phulpoto IA, Yu Z, Hu B, Wang Y, Ndayisenga F, Li J, Liang H, Qazi MA (2020) Production and characterization of surfactin-like biosurfactant produced by novel strain Bacillus nealsonii S2MT and it’s potential for oil contaminated soil remediation. Microb Cell Fact 19(1):1–12

    Article  Google Scholar 

  • Pirhadi M, Enayatizamir N, Motamedi H, Sorkheh K (2016) Screening of salt tolerant sugarcane endophytic bacteria with potassium and zinc for their solubilizing and antifungal activity. Biosci Biotechnol Res Commun 93:530–538

    Article  Google Scholar 

  • Raj A, Kumar A, Dames JF (2021) Tapping the role of microbial biosurfactants in pesticide remediation: an eco-friendly approach for environmental sustainability. Front Microbiol 12:791723–791723

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: A simple method for measuring cell- surface hydrophobicity. FEMS Microbiol Lett 9(1):29–33

    Article  CAS  Google Scholar 

  • Sabine J, Zeidler S, Nig P, Ngu ND, Scholz A, Averhoff B et al (2018) Salt induction and activation of MtlD, the key enzyme in the synthesis of the compatible solute mannitol in Acinetobacter baumannii. Microbiol Open 9:55–78

    Google Scholar 

  • Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97(3):1005–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5(4):337–353

    Article  PubMed  Google Scholar 

  • Sasikumar V, Priya V, Shankar CS, Sekar SD (2014) Isolation and preliminary screening of lignin degrading microbes. J Acad Ind Res 3(6):291–294

    Google Scholar 

  • Sayed K, Baloo L, Kutty SRB, Makba F (2021) Potential biodegradation of Tapis light crude petroleum oil, using palm oil mill effluent final discharge as biostimulant for isolated halotolerant Bacillus strains. Mar Pollut Bull 172:112863

    Article  CAS  PubMed  Google Scholar 

  • Shaoping K, Zhiwei D, Bingchen W, Huihui W, Jialiang L, Hongbo S (2021) Changes of sensitive microbial community in oil polluted soil in the coastal area in Shandong. China for Ecorestoration Ecotoxicol Environ Saf 207:111551

    Article  PubMed  Google Scholar 

  • Shibulal B, Al-Bahry SN, Al-Wahaibi YM, Elshafie AE, Al-Bemani AS, Joshi SJ (2018) Microbial-enhanced heavy oil recovery under laboratory conditions by Bacillus firmus BG4 and Bacillus halodurans BG5 isolated from heavy oil fields. Colloids Interfaces 2(1):1

    Article  CAS  Google Scholar 

  • Shin CS, Lee JP, Lee JS, Park SC (2000) Enzyme production of Trichoderma reesei Rut C-30 on various lignocellulosic substrates. In Twenty-first symposium on biotechnology for fuels and chemicals (pp. 237–245). Humana Press, Totowa, NJ.

  • Shivanand P, Mugeraya G (2011) Halophilic bacteria and their compatible solutes–osmoregulation and potential applications. Curr Sci 1516–1521

  • Silva-Dias A, Miranda IM, Branco J, Monteiro-Soares M, Pina-Vaz C, Rodrigues AG (2015) Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp. Front Microbiol 6:205

    Article  PubMed  PubMed Central  Google Scholar 

  • Stancu MM (2020) Biosurfactant production by a Bacillus megaterium strain. Open Life Sci 15(1):629–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun JQ, Xu L, Liu XY, Zhao GF, Cai H, Nie Y, Wu XL (2018a) Functional genetic diversity and culturability of petroleum-degrading bacteria isolated from oil-contaminated soils. Front Microbiol 9:1332

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun W, Cao W, Jiang M, Saren G, Liu J, Cao J, Ali I, Yu X, Peng C, Naz I (2018) Isolation and characterization of biosurfactant-producing and diesel oil degrading Pseudomonas sp. CQ2 from Changqing oil field. China RSC advances 8(69):39710–39720

    Article  CAS  PubMed  Google Scholar 

  • Supaphol S, Panichsakpatana S, Trakulnaleamsai S, Tungkananuruk N, Roughjanajirapa P, O’Donnell AG (2006) The selection of mixed microbial inocula in environmental biotechnology: Example using petroleum contaminated tropical soils. J Microbiol Methods 65(3):432–441

    Article  CAS  PubMed  Google Scholar 

  • Tathonga S, Muangchindaa C, Kongsuwanb C, Khondeec N, Luepromchaib E, Soonglerdsongphae S, Ruangchainikome C, Pinyakongb O (2022) Production of lipopeptide biosurfactant by Bacillus subtilis GY19 and its application as oil-contaminated surface cleaning agent. ScienceAsia 48(1):43–50

    Article  Google Scholar 

  • Tian JH, Pourcher AM, Peu P (2016) Isolation of bacterial strains able to metabolize lignin and lignin-related compounds. Lett Appl Microbiol 63(1):30–37

    Article  CAS  PubMed  Google Scholar 

  • Verma M, Ekka A (2015) Kraft lignin degradation through bacterial strain isolated from soils of timber areas. IOSR J Environ Sci Toxicol Food Technol 1(6):28–32

    Google Scholar 

  • Viramontes-Ramos S, Portillo-Ruiz MC, Ballinas-Casarrubias MDL, Torres-Muñoz JV, Rivera-Chavira BE, Nevárez-Moorillón GV (2010) Selection of biosurfactan/bioemulsifier-producing bacteria from hydrocarbon-contaminated soil. Braz J Microbiol 41:668–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollenbroich D, Pauli G, Ozel M, Vater J (1997) Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl Environ Microbiol 63(1):44–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav M, Yadav HS (2015) Applications of ligninolytic enzymes to pollutants, wastewater, dyes, soil, coal, paper and polymers. Environ Chem Lett 13(3): 309–318

  • Yamamura S, Yamashita M, Fujimoto N, Kuroda M, Kashiwa M, Sei K, Fujita M, Ike M (2007) Bacillus selenatarsenatis sp. nov, a selenate-and arsenate-reducing bacterium isolated from the effluent drain of a glass-manufacturing plant. Int J Syst Evol Microbiol 57(5):1060–1064

    Article  CAS  PubMed  Google Scholar 

  • Youssef N, Duncan K, Nagle D, Savage K, Knapp R, McInerney M (2004) Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods 56(3):339–347

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Jia L, Wang S, Qu J, Li K, Xu L, Shi Y, Yan Y (2010) Biodegradation of beta-cypermethrin by two Serratia spp. with different cell surface hydrophobicity. Bioresour Technol 101(10):3423–3429

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Xue Q, Gao H, Lai H, Wang P (2016) Production of lipopeptide biosurfactants by Bacillus atrophaeus 52a and their potential use in microbial enhanced oil recovery. Microb Cell Factories 15(1):1–11

    Article  Google Scholar 

  • Zhang J, Lai H, Gao H, Hu S, Xue Q (2018) Prevention and mitigation of paraffin deposition by biosurfactant-producing and paraffin-degrading Bacillus amyloliquefaciens strain 6–2c. Chem Eng J 335:510–519

    Article  CAS  Google Scholar 

  • Zhou L, Li H, Zhang Y, Han S, Xu H (2016) Sphingomonas from petroleum-contaminated soils in Shenfu, China and their PAHs degradation abilities. Braz J Microbiol 47:271–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Agricultural Sciences and Natural Resources University of Khuzestan, for the support of this study and Shahid Chamran University of Ahvaz.

Funding

This study was supported by the Iran National Science Foundation, grant no. 99022578.

Author information

Authors and Affiliations

Authors

Contributions

Lab work: Sara Valizadeh, supervision: Naeimeh Enayatizamir and Habibolah Nadian Ghomsheh, advisors: Hossein Motamedi and Bijan Khalili Moghadam. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Naeimeh Enayatizamir.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valizadeh, S., Enayatizamir, N., Ghomsheh, H.N. et al. Characterization of the biosurfactant production and enzymatic potential of bacteria isolated from an oil-contaminated saline soil. Int Microbiol 26, 529–542 (2023). https://doi.org/10.1007/s10123-022-00318-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-022-00318-w

Keywords

Navigation