Skip to main content

Advertisement

Log in

Chromosomal copy number amplification-driven Linc01711 contributes to gastric cancer progression through histone modification-mediated reprogramming of cholesterol metabolism

  • Original Article
  • Published:
Gastric Cancer Aims and scope Submit manuscript

Abstract

Background

Chromosome gains or localized amplifications are frequently observed in human gastric cancer (GC) and are major causes of aberrant oncogene activation. However, the significance of long non-coding RNAs (LncRNAs) in the above process is largely unknown.

Methods

The copy number aberrations (CNAs) data of GC samples were downloaded and analyzed from the TCGA database. qRT-PCR and fluorescence in situ hybridization were used to evaluate the expression of Linc01711 in GC. The effects of Linc01711 on GC progression were investigated through in vitro and in vivo assays. The mechanism of Linc01711 action was explored through transcriptome sequencing, chromatin immunoprecipitation sequencing, RNA immunoprecipitation, RNA pull-down and chromatin isolation by RNA purification (ChIRP) assays.

Results

We report for the first time a novel DNA copy number amplification-driven LncRNA on chromosome 20q13, designated Linc01711 in human GC, which is highly associated with malignant features. Functionally, Linc01711 significantly accelerates the proliferation and metastasis of GC. Mechanistically, Linc01711 acts as a modular scaffold to promote the binding of histone acetyltransferase HBO1 and histone demethylase KDM9. By coordinating the localization of the HBO1/KDM9 complex, Linc01711 specifies the histone modification pattern on the target genes, such as LPCAT1, and consequently facilitates the cholesterol synthesis, thereby contributing to tumor progression.

Conclusions

Our findings suggest that copy number amplification-driven Linc01711 may serve as a promising prognostic predictor for GC patients and targeting Linc01711-related cholesterol metabolism pathway may be meaningful in anticancer strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data are available upon request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2021;71:209–49.

    Article  Google Scholar 

  2. Kang YK, Chen LT, Ryu MH, Oh DY, Oh SC, Chung HC, et al. Nivolumab plus chemotherapy versus placebo plus chemotherapy in patients with HER2-negative, untreated, unresectable advanced or recurrent gastric or gastro-oesophageal junction cancer (ATTRACTION-4): a randomised, multicentre, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2022;23:234–47.

    Article  CAS  PubMed  Google Scholar 

  3. Yamashita S, Kishino T, Takahashi T, Shimazu T, Charvat H, Kakugawa Y, et al. Genetic and epigenetic alterations in normal tissues have differential impacts on cancer risk among tissues. Proc Natl Acad Sci USA. 2018;115:1328–33.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grady WM, Yu M, Markowitz SD. Epigenetic Alterations in the Gastrointestinal Tract: Current and Emerging Use for Biomarkers of Cancer. Gastroenterology. 2021;160:690–709.

    Article  CAS  PubMed  Google Scholar 

  5. Deng N, Goh LK, Wang H, Das K, Tao J, Tan IB, et al. A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut. 2012;61:673–84.

    Article  CAS  PubMed  Google Scholar 

  6. Liang L, Fang JY, Xu J. Gastric cancer and gene copy number variation: emerging cancer drivers for targeted therapy. Oncogene. 2016;35:1475–82.

    Article  CAS  PubMed  Google Scholar 

  7. Arakawa N, Sugai T, Habano W, Eizuka M, Sugimoto R, Akasaka R, et al. Genome-wide analysis of DNA copy number alterations in early and advanced gastric cancers. Mol Carcinog. 2017;56:527–37.

    Article  CAS  PubMed  Google Scholar 

  8. Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature. 2012;482:339–46.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell. 2013;154:26–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun M, Nie F, Wang Y, Zhang Z, Hou J, He D, et al. LncRNA HOXA11-AS promotes proliferation and invasion of gastric cancer by scaffolding the chromatin modification factors PRC2, LSD1, and DNMT1. Can Res. 2016;76:6299–310.

    Article  CAS  Google Scholar 

  11. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17:47–62.

    Article  CAS  PubMed  Google Scholar 

  12. Li Y, Jiang T, Zhou W, Li J, Li X, Wang Q, et al. Pan-cancer characterization of immune-related lncRNAs identifies potential oncogenic biomarkers. Nat Commun. 2020;11:1000.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dar AA, Belkhiri A, El-Rifai W. The aurora kinase A regulates GSK-3beta in gastric cancer cells. Oncogene. 2009;28:866–75.

    Article  CAS  PubMed  Google Scholar 

  14. Sakakura C, Hagiwara A, Yasuoka R, Fujita Y, Nakanishi M, Masuda K, et al. Tumour-amplified kinase BTAK is amplified and overexpressed in gastric cancers with possible involvement in aneuploid formation. Br J Cancer. 2001;84:824–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weiss MM, Snijders AM, Kuipers EJ, Ylstra B, Pinkel D, Meuwissen SG, et al. Determination of amplicon boundaries at 20q13.2 in tissue samples of human gastric adenocarcinomas by high-resolution microarray comparative genomic hybridization. J Pathol. 2003;200:320–6.

    Article  CAS  PubMed  Google Scholar 

  16. Yue B, Cai D, Liu C, Fang C, Yan D. Linc00152 functions as a competing endogenous RNA to confer oxaliplatin resistance and holds prognostic values in colon cancer. Mol Ther. 2016;24:2064–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Inuzuka H, Gao D, Finley LW, Yang W, Wan L, Fukushima H, et al. Acetylation-dependent regulation of Skp2 function. Cell. 2012;150:179–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li L, Liu X, He L, Yang J, Pei F, Li W, et al. ZNF516 suppresses EGFR by targeting the CtBP/LSD1/CoREST complex to chromatin. Nat Commun. 2017;8:691.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. MacPherson L, Anokye J, Yeung MM, Lam EYN, Chan YC, Weng CF, et al. HBO1 is required for the maintenance of leukaemia stem cells. Nature. 2020;577:266–70.

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Hung T, Binda O, Champagne KS, Kuo AJ, Johnson K, Chang HY, et al. ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetylation to attenuate cellular transformation. Mol Cell. 2009;33:248–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Y, Iwamori T, Kaneko T, Iida H, Iwamori N. Comparative distributions of RSBN1 and methylated histone H4 Lysine 20 in the mouse spermatogenesis. PLoS ONE. 2021;16:e0253897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li Z, Nie F, Wang S, Li L. Histone H4 Lys 20 monomethylation by histone methylase SET8 mediates Wnt target gene activation. Proc Natl Acad Sci USA. 2011;108:3116–23.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ahn WG, Jung JS, Kwon HY, Song DK. Alteration of lysophosphatidylcholine-related metabolic parameters in the plasma of mice with experimental sepsis. Inflammation. 2017;40:537–45.

    Article  CAS  PubMed  Google Scholar 

  24. Tao M, Luo J, Gu T, Yu X, Song Z, Jun Y, et al. LPCAT1 reprogramming cholesterol metabolism promotes the progression of esophageal squamous cell carcinoma. Cell Death Dis. 2021;12:845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jie M, Wu Y, Gao M, Li X, Liu C, Ouyang Q, et al. CircMRPS35 suppresses gastric cancer progression via recruiting KAT7 to govern histone modification. Mol Cancer. 2020;19:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Feng Y, Vlassis A, Roques C, Lalonde ME, Gonzalez-Aguilera C, Lambert JP, et al. BRPF3-HBO1 regulates replication origin activation and histone H3K14 acetylation. EMBO J. 2016;35:176–92.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao Z, Shilatifard A. Epigenetic modifications of histones in cancer. Genome Biol. 2019;20:245.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sillars-Hardebol AH, Carvalho B, Tijssen M, Belien JA, de Wit M, Delis-van Diemen PM, et al. TPX2 and AURKA promote 20q amplicon-driven colorectal adenoma to carcinoma progression. Gut. 2012;61:1568–75.

    Article  CAS  PubMed  Google Scholar 

  29. Xu L, Li X, Cai M, Chen J, Li X, Wu WK, et al. Increased expression of Solute carrier family 12 member 5 via gene amplification contributes to tumour progression and metastasis and associates with poor survival in colorectal cancer. Gut. 2016;65:635–46.

    Article  CAS  PubMed  Google Scholar 

  30. Tanner MM, Tirkkonen M, Kallioniemi A, Isola J, Kuukasjarvi T, Collins C, et al. Independent amplification and frequent co-amplification of three nonsyntenic regions on the long arm of chromosome 20 in human breast cancer. Cancer Res. 1996;56:3441–5.

    CAS  PubMed  Google Scholar 

  31. Garcia-Murillas I, Sharpe R, Pearson A, Campbell J, Natrajan R, Ashworth A, et al. An siRNA screen identifies the GNAS locus as a driver in 20q amplified breast cancer. Oncogene. 2014;33:2478–86.

    Article  CAS  PubMed  Google Scholar 

  32. Carvalho B, Postma C, Mongera S, Hopmans E, Diskin S, van de Wiel MA, et al. Multiple putative oncogenes at the chromosome 20q amplicon contribute to colorectal adenoma to carcinoma progression. Gut. 2009;58:79–89.

    Article  CAS  PubMed  Google Scholar 

  33. Shree B, Sengar S, Tripathi S, Sharma V. LINC01711 promotes transforming growth factor-beta (TGF-beta) induced invasion in glioblastoma multiforme (GBM) by acting as a competing endogenous RNA for miR-34a and promoting ZEB1 expression. Neurosci Lett. 2023;792:136937.

    Article  CAS  PubMed  Google Scholar 

  34. Vishnubalaji R, Alajez NM. Epigenetic regulation of triple negative breast cancer (TNBC) by TGF-beta signaling. Sci Rep. 2021;11:15410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Qu L, Wu Z, Li Y, Xu Z, Liu B, Liu F, et al. A feed-forward loop between lncARSR and YAP activity promotes expansion of renal tumour-initiating cells. Nat Commun. 2016;7:12692.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang J, Li Z, Liu L, Wang Q, Li S, Chen D, et al. Long noncoding RNA TSLNC8 is a tumor suppressor that inactivates the interleukin-6/STAT3 signaling pathway. Hepatology. 2018;67:171–87.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang C, Ge S, Gong W, Xu J, Guo Z, Liu Z, et al. LncRNA ANRIL acts as a modular scaffold of WDR5 and HDAC3 complexes and promotes alteration of the vascular smooth muscle cell phenotype. Cell Death Dis. 2020;11:435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329:689–93.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun TT, He J, Liang Q, Ren LL, Yan TT, Yu TC, et al. LncRNA GClnc1 promotes gastric carcinogenesis and may act as a modular scaffold of WDR5 and KAT2A complexes to specify the histone modification pattern. Cancer Discov. 2016;6:784–801.

    Article  CAS  PubMed  Google Scholar 

  40. Wei C, Dong X, Lu H, Tong F, Chen L, Zhang R, et al. LPCAT1 promotes brain metastasis of lung adenocarcinoma by up-regulating PI3K/AKT/MYC pathway. J Exp Clin Cancer Res. 2019;38:95.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Uehara T, Kikuchi H, Miyazaki S, Iino I, Setoguchi T, Hiramatsu Y, et al. Overexpression of lysophosphatidylcholine acyltransferase 1 and concomitant lipid alterations in gastric cancer. Ann Surg Oncol. 2016;23(Suppl 2):S206–13.

    Article  PubMed  Google Scholar 

  42. Huang B, Song BL, Xu C. Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities. Nat Metab. 2020;2:132–41.

    Article  PubMed  Google Scholar 

  43. Xu C, Gu L, Kuerbanjiang M, Jiang C, Hu L, Liu Y, et al. Adaptive activation of EFNB2/EPHB4 axis promotes post-metastatic growth of colorectal cancer liver metastases by LDLR-mediated cholesterol uptake. Oncogene. 2023;42:99–112.

    Article  CAS  PubMed  Google Scholar 

  44. Vassilev B, Sihto H, Li S, Holtta-Vuori M, Ilola J, Lundin J, et al. Elevated levels of StAR-related lipid transfer protein 3 alter cholesterol balance and adhesiveness of breast cancer cells: potential mechanisms contributing to progression of HER2-positive breast cancers. Am J Pathol. 2015;185:987–1000.

    Article  CAS  PubMed  Google Scholar 

  45. Miao P, Guan L. Association of Dietary Cholesterol Intake With Risk of Gastric Cancer: A Systematic Review and Meta-Analysis of Observational Studies. Front Nutr. 2021;8:722450.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Man HJ, Marsden PA. LncRNAs and epigenetic regulation of vascular endothelium: genome positioning system and regulators of chromatin modifiers. Curr Opin Pharmacol. 2019;45:72–80.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Y, Sun Z, Jia J, Du T, Zhang N, Tang Y, et al. Overview of Histone Modification. Adv Exp Med Biol. 2021;1283:1–16.

    Article  CAS  PubMed  Google Scholar 

  48. Jorgensen S, Schotta G, Sorensen CS. Histone H4 lysine 20 methylation: key player in epigenetic regulation of genomic integrity. Nucleic Acids Res. 2013;41:2797–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet. 2008;40:897–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Beck DB, Oda H, Shen SS, Reinberg D. PR-Set7 and H4K20me1: at the crossroads of genome integrity, cell cycle, chromosome condensation, and transcription. Genes Dev. 2012;26:325–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nikolaou KC, Moulos P, Harokopos V, Chalepakis G, Talianidis I. Kmt5a controls hepatic metabolic pathways by facilitating RNA Pol II release from promoter-proximal regions. Cell Rep. 2017;20:909–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet. 2005;37:391–400.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shanghai (No.22ZR1438800) and “Clinic Plus” Outstanding Project of Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine (No.2020ZYA008).

Funding

Natural Science Foundation of Shanghai, 22ZR1438800, Chunchao Zhu, “Clinic Plus” Outstanding Project of Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, 2020ZYA008, Ben Yue

Author information

Authors and Affiliations

Authors

Contributions

Ben Yue: funding acquisition, validation, writing—original draft. Jianjun Chen: conceptualization, software, visualization. Tianshang Bao: software, validation, formal analysis. Yuanruohan Zhang: investigation. Linxi Yang: investigation. Zizhen Zhang: resources, writing—review and editing. Zheng Wang: conceptualization, resources, writing—review and editing. Chunchao Zhu: resources, funding acquisition.

Corresponding author

Correspondence to Chunchao Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All animal experiments were approved by the Institutional Animal Care and Use Committee of Renji Hospital, School of Medicine, Shanghai Jiao Tong University, and performed in accordance with the Guidelines for Welfare of Animals in Experimental Neoplasia. All the sample studies were performed following written consent from all patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, B., Chen, J., Bao, T. et al. Chromosomal copy number amplification-driven Linc01711 contributes to gastric cancer progression through histone modification-mediated reprogramming of cholesterol metabolism. Gastric Cancer 27, 308–323 (2024). https://doi.org/10.1007/s10120-023-01464-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10120-023-01464-4

Keywords

Navigation