Skip to main content
Log in

N6-methyladenosine-modified MIB1 promotes stemness properties and peritoneal metastasis of gastric cancer cells by ubiquitinating DDX3X

  • Original Article
  • Published:
Gastric Cancer Aims and scope Submit manuscript

Abstract

Background

Peritoneal metastasis (PM), one of the most typical forms of metastasis in advanced gastric cancer (GC), indicates a poor prognosis. Exploring the potential molecular mechanism of PM is urgently necessary, as it has not been well studied. E3 ubiquitin ligase has been widely established to exert a biological function in various cancers, but its mechanism of action in GC with PM remains unknown.

Methods

The effect of MIB1 on PM of GC was confirmed in vitro and in vivo. Co-immunoprecipitation (Co-IP) and mass spectrometry demonstrated the association between MIB1 and DDX3X. Western blot, flow cytometry and immunofluorescence determined that DDX3X was ubiquitylated by MIB1 and promoted stemness. We further confirmed that METTL3 promoted the up-regulation of MIB1 by RNA immunoprecipitation (RIP), luciferase reporter assay and other experiments.

Results

We observed that the E3 ubiquitin ligase Mind bomb 1 (MIB1) was highly expressed in PMs, and patients with PM with high MIB1 expression showed a worse prognosis than those with low MIB1 expression. Mechanistically, our study demonstrated that the E3 ubiquitin ligase MIB1 promoted epithelial-mesenchymal transition (EMT) progression and stemness in GC cells by degrading DDX3X. In addition, METTL3 mediated m6A modification to stabilize MIB1, which required the m6A reader IGF2BP2.

Conclusions

Our study elucidated the specific molecular mechanism by which MIB1 promotes PM of GC, and suggested that targeting the METTL3-MIB1-DDX3X axis may be a promising therapeutic strategy for GC with PM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and analysed during the current study are not publicly available due other members of our group need to use RNA-seq data but are available from the corresponding author on reasonable request.

Abbreviations

GC:

Gastric cancer

PM:

Peritoneal metastasis

MIB1:

Mind bomb 1

DDX3X:

DEAD-box helicase 3 X-linked

EMT:

Epithelial-mesenchymal transition

LC/MS:

Liquid chromatography/mass spectrometry

Co-IP:

Co-Immunoprecipitation

RIP:

RNA-binding protein immunoprecipitation

MeRIP:

Methylated RNA Immunoprecipitation

qRT-PCR:

Quantitative real-time polymerase chain reaction

IHC:

Immunohistochemistry

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Shah MA. Update on metastatic gastric and esophageal cancers. J Clin Oncol. 2015;33:1760–9.

    Article  CAS  PubMed  Google Scholar 

  3. Thomassen I, van Gestel YR, van Ramshorst B, Luyer MD, Bosscha K, Nienhuijs SW, et al. Peritoneal carcinomatosis of gastric origin: a population-based study on incidence, survival and risk factors. Int J Cancer. 2014;134:622–8.

    Article  CAS  PubMed  Google Scholar 

  4. Ishizone S, Maruta F, Saito H, Koide N, Sugiyama A, Nakayama J, et al. Efficacy of S-1 for patients with peritoneal metastasis of gastric cancer. Chemotherapy. 2006;52:301–7.

    Article  CAS  PubMed  Google Scholar 

  5. Dong D, Tang L, Li ZY, Fang MJ, Gao JB, Shan XH, et al. Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer. Ann Oncol. 2019;30:431–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kanda M, Kodera Y. Molecular mechanisms of peritoneal dissemination in gastric cancer. World J Gastroenterol. 2016;22:6829–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ubiquitination MG. Trashing the CIA. Nat Chem Biol. 2018;14:199.

    Article  Google Scholar 

  8. Oh E, Akopian D, Rape M. Principles of ubiquitin-dependent signaling. Annu Rev Cell Dev Biol. 2018;34:137–62.

    Article  CAS  PubMed  Google Scholar 

  9. Zou T, Lin Z. The involvement of ubiquitination machinery in cell cycle regulation and cancer progression. Int J Mol Sci. 2021;22:5754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roberts JZ, Crawford N, Longley DB. The role of ubiquitination in apoptosis and necroptosis. Cell Death Differ. 2022;29:272–84.

    Article  CAS  PubMed  Google Scholar 

  11. Shaid S, Brandts CH, Serve H, Dikic I. Ubiquitination and selective autophagy. Cell Death Differ. 2013;20:21–30.

    Article  CAS  PubMed  Google Scholar 

  12. Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 2020;5:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun T, Liu Z, Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer. 2020;19:146.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gao P, Hao J-L, Xie Q-W, Han G-Q, Xu B-B, Hu H, et al. PELO facilitates PLK1-induced the ubiquitination and degradation of Smad4 and promotes the progression of prostate cancer. Oncogene. 2022;41:2945–57.

    Article  CAS  PubMed  Google Scholar 

  15. Bie Q, Song H, Chen X, Yang X, Shi S, Zhang L, et al. IL-17B/IL-17RB signaling cascade contributes to self-renewal and tumorigenesis of cancer stem cells by regulating Beclin-1 ubiquitination. Oncogene. 2021;40:2200–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang F, Xu J, Li H, Tan M, Xiong X, Sun Y. FBXW2 suppresses migration and invasion of lung cancer cells via promoting β-catenin ubiquitylation and degradation. Nat Commun. 2019;10:1382.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  17. Capoccia BJ, Jin RU, Kong Y-Y, Peek RM, Fassan M, Rugge M, et al. The ubiquitin ligase Mindbomb 1 coordinates gastrointestinal secretory cell maturation. J Clin Investig. 2013;123:1475–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo B, McMillan BJ, Blacklow SC. Structure and function of the Mind bomb E3 ligase in the context of Notch signal transduction. Curr Opin Struct Biol. 2016;41:38–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang B, Cheng X, Zhan S, Jin X, Liu T. MIB1 upregulates IQGAP1 and promotes pancreatic cancer progression by inducing ST7 degradation. Mol Oncol. 2021;15:3062–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang H, Huang Q, Xia J, Cheng S, Pei D, Zhang X, et al. The E3 ligase MIB1 promotes proteasomal degradation of NRF2 and sensitizes lung cancer cells to ferroptosis. Mol Cancer Res. 2022;20:253–64.

    Article  PubMed  Google Scholar 

  21. Su J, Wu G, Ye Y, Zhang J, Zeng L, Huang X, et al. NSUN2-mediated RNA 5-methylcytosine promotes esophageal squamous cell carcinoma progression via LIN28B-dependent GRB2 mRNA stabilization. Oncogene. 2021;40:5814–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu Q-C, Tien Y-C, Shi Y-H, Chen S, Zhu Y-Q, Huang X-T, et al. METTL3 promotes intrahepatic cholangiocarcinoma progression by regulating IFIT2 expression in an m6A-YTHDF2-dependent manner. Oncogene. 2022;41:1622–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma J, Han H, Huang Y, Yang C, Zheng S, Cai T, et al. METTL1/WDR4-mediated m7G tRNA modifications and m7G codon usage promote mRNA translation and lung cancer progression. Mol Ther. 2021;29:3422–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu K, Xu P, Lv J, Ge H, Yan Z, Huang S, et al. Peritoneal high-fat environment promotes peritoneal metastasis of gastric cancer cells through activation of NSUN2-mediated ORAI2 m5C modification. Oncogene. 2023;42:1980–93.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou C, Zhang Z, Zhu X, Qian G, Zhou Y, Sun Y, et al. N6-Methyladenosine modification of the TRIM7 positively regulates tumorigenesis and chemoresistance in osteosarcoma through ubiquitination of BRMS1. EBioMedicine. 2020;59: 102955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yadav P, Subbarayalu P, Medina D, Nirzhor S, Timilsina S, Rajamanickam S, et al. M6A RNA methylation regulates histone ubiquitination to support cancer growth and progression. Cancer Res. 2022;82:1872–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bajaj J, Diaz E, Reya T. Stem cells in cancer initiation and progression. J Cell Biol. 2020.

    Google Scholar 

  28. Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2018;18:128–34.

    Article  CAS  PubMed  Google Scholar 

  29. Aiello NM, Brabletz T, Kang Y, Nieto MA, Weinberg RA, Stanger BZ. Upholding a role for EMT in pancreatic cancer metastasis. Nature. 2017;547:E7–8.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Wu H, Xiang Z, Huang G, He Q, Song J, Dou R, et al. BGN/FAP/STAT3 positive feedback loop mediated mutual interaction between tumor cells and mesothelial cells contributes to peritoneal metastasis of gastric cancer. Int J Biol Sci. 2023;19:465–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang C, Yang Z, Xu E, Shen X, Wang X, Li Z, et al. Apolipoprotein C-II induces EMT to promote gastric cancer peritoneal metastasis via PI3K/AKT/mTOR pathway. Clin Transl Med. 2021;11: e522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29:212–26.

    Article  CAS  PubMed  Google Scholar 

  33. Tang Q, Chen J, Di Z, Yuan W, Zhou Z, Liu Z, et al. TM4SF1 promotes EMT and cancer stemness via the Wnt/β-catenin/SOX2 pathway in colorectal cancer. J Exp Clin Cancer Res. 2020;39:232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Berndsen CE, Wolberger C. New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol. 2014;21:301–7.

    Article  CAS  PubMed  Google Scholar 

  35. Brabletz S, Schuhwerk H, Brabletz T, Stemmler MP. Dynamic EMT: a multi-tool for tumor progression. EMBO J. 2021;40: e108647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ye X, Weinberg RA. Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol. 2015;25:675–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Secchi M, Lodola C, Garbelli A, Bione S, Maga G. DEAD-box RNA helicases DDX3X and DDX5 as oncogenes or oncosuppressors: a network perspective. Cancers (Basel). 2022;14:3820.

    Article  CAS  PubMed  Google Scholar 

  38. Lin T-C. DDX3X multifunctionally modulates tumor progression and serves as a prognostic indicator to predict cancer outcomes. Int J Mol Sci. 2019;21:281.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mo J, Liang H, Su C, Li P, Chen J, Zhang B. DDX3X: structure, physiologic functions and cancer. Mol Cancer. 2021;20:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barankiewicz J, Salomon-Perzyński A, Misiewicz-Krzemińska I, Lech-Marańda E. CRL4CRBN E3 ligase complex as a therapeutic target in multiple myeloma. Cancers (Basel). 2022;14:4492.

    Article  CAS  PubMed  Google Scholar 

  41. Itoh M, Kim C-H, Palardy G, Oda T, Jiang Y-J, Maust D, et al. Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by delta. Dev Cell. 2003;4:67–82.

    Article  CAS  PubMed  Google Scholar 

  42. Liu L-J, Liu T-T, Ran Y, Li Y, Zhang X-D, Shu H-B, et al. The E3 ubiquitin ligase MIB1 negatively regulates basal IκBα level and modulates NF-κB activation. Cell Res. 2012;22:603–6.

    Article  CAS  PubMed  Google Scholar 

  43. Ray J, Hoey C, Huang X, Jeon J, Taeb S, Downes MR, et al. MicroRNA-198 suppresses prostate tumorigenesis by targeting MIB1. Oncol Rep. 2019;42:1047–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Li M, Liu B, Yi J, Yang Y, Wang J, Zhu W-G, et al. MIB1-mediated degradation of WRN promotes cellular senescence in response to camptothecin treatment. FASEB J. 2020;34:11488–97.

    Article  CAS  PubMed  Google Scholar 

  45. Guo Y, Li Q, Zhao G, Zhang J, Yuan H, Feng T, et al. Loss of TRIM31 promotes breast cancer progression through regulating K48- and K63-linked ubiquitination of p53. Cell Death Dis. 2021;12:945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cao L, Liu X, Zheng B, Xing C, Liu J. Role of K63-linked ubiquitination in cancer. Cell Death Discov. 2022;8:410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nassar D, Blanpain C. Cancer stem cells: basic concepts and therapeutic implications. Annu Rev Pathol. 2016;11:47–76.

    Article  CAS  PubMed  Google Scholar 

  48. Oskarsson T, Batlle E, Massagué J. Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell. 2014;14:306–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cao L, Hu X, Zhang Y. Omental milky spots–highly efficient “natural filter” for screening gastric cancer stem cells. Med Hypotheses. 2009;73:1017–8.

    Article  PubMed  Google Scholar 

  50. Cao L, Hu X, Zhang Y, Sun XT. Omental milky spots in screening gastric cancer stem cells. Neoplasma. 2011;58:20–6.

    Article  CAS  PubMed  Google Scholar 

  51. Rasheed ZA, Yang J, Wang Q, Kowalski J, Freed I, Murter C, et al. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst. 2010;102:340–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ding Q, Miyazaki Y, Tsukasa K, Matsubara S, Yoshimitsu M, Takao S. CD133 facilitates epithelial-mesenchymal transition through interaction with the ERK pathway in pancreatic cancer metastasis. Mol Cancer. 2014;13:15.

    Article  PubMed  PubMed Central  Google Scholar 

  53. May CD, Sphyris N, Evans KW, Werden SJ, Guo W, Mani SA. Epithelial-mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression. Breast Cancer Res. 2011;13:202.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Scheel C, Weinberg RA. Phenotypic plasticity and epithelial-mesenchymal transitions in cancer and normal stem cells? Int J Cancer. 2011;129:2310–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shapiro IM, Cheng AW, Flytzanis NC, Balsamo M, Condeelis JS, Oktay MH, et al. An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet. 2011;7: e1002218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ribatti D, Tamma R, Annese T. Epithelial-mesenchymal transition in cancer: a historical overview. Transl Oncol. 2020;13: 100773.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pan T, Yu Z, Jin Z, Wu X, Wu A, Hou J, et al. Tumor suppressor lnc-CTSLP4 inhibits EMT and metastasis of gastric cancer by attenuating HNRNPAB-dependent Snail transcription. Mol Ther Nucleic Acids. 2021;23:1288–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shen L, Zhang J, Xu M, Zheng Y, Wang M, Yang S, et al. DDX3 acts as a tumor suppressor in colorectal cancer as loss of DDX3 in advanced cancer promotes tumor progression by activating the MAPK pathway. Int J Biol Sci. 2022;18:3918–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang W, Jia M, Zhao C, Yu Z, Song H, Qin Y, et al. RNF39 mediates K48-linked ubiquitination of DDX3X and inhibits RLR-dependent antiviral immunity. Sci Adv. 2021.

    Google Scholar 

  60. Pan Y, Zhu Y, Zhang J, Jin L, Cao P. A feedback loop between GATA2-AS1 and GATA2 promotes colorectal cancer cell proliferation, invasion, epithelial-mesenchymal transition and stemness via recruiting DDX3X. J Transl Med. 2022;20:287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li H-K, Mai R-T, Huang H-D, Chou C-H, Chang Y-A, Chang Y-W, et al. DDX3 represses stemness by epigenetically modulating tumor-suppressive miRNAs in hepatocellular carcinoma. Sci Rep. 2016;6:28637.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  62. Chen M, Wong C-M. The emerging roles of N6-methyladenosine (m6A) deregulation in liver carcinogenesis. Mol Cancer. 2020;19:44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gao Z, Li C, Sun H, Bian Y, Cui Z, Wang N, et al. N6-methyladenosine-modified USP13 induces pro-survival autophagy and imatinib resistance via regulating the stabilization of autophagy-related protein 5 in gastrointestinal stromal tumors. Cell Death Differ. 2023;30:544–59.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX21_0622), Jiangsu Province Capability Improvement Project through Science, Technology and Education (Jiangsu Provincial Medical Key Discipline, ZDXK202222). We would like to thank the Core Facility of the First Affiliated Hospital of Nanjing Medical University for its help in the detection of experimental samples.

Author information

Authors and Affiliations

Authors

Contributions

DZ conceptualized and supervised the research. PX, KL, SH and JL designed and performed most experiments. ZY, HG, QC, ZC performed animal experiments. PJ, BL, HX, LY were engaged in biostatistics and bioinformatics analysis. ZX is responsible for the collection of tissues and follow-up of patients.

Corresponding author

Correspondence to Diancai Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

All procedures conformed to the ethical standards of the responsible committee on human experimentation and to the Helsinki Declaration of 1964 and later versions. Informed consent or the equivalent consent was obtained from all patients included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5183 KB)

Supplementary file2 (DOCX 35 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Liu, K., Huang, S. et al. N6-methyladenosine-modified MIB1 promotes stemness properties and peritoneal metastasis of gastric cancer cells by ubiquitinating DDX3X. Gastric Cancer 27, 275–291 (2024). https://doi.org/10.1007/s10120-023-01463-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10120-023-01463-5

Keywords

Navigation