Skip to main content
Log in

A Dynamic Covalent Bonding-based Nanoplatform for Intracellular Co-Delivery of Protein Drugs and Chemotherapeutics with Enhanced Anti-Cancer Effect

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Efficient intracellular delivery of protein drugs is critical for protein therapy. The combination of protein drugs with chemotherapeutics represents a promising strategy in enhancing anti-cancer effect. However, co-delivery systems for efficient delivery of these two kinds of drugs are still lacking because of their different properties. Herein, we show a well-designed delivery system based on dynamic covalent bond for efficient intracellular co-delivery of ribonuclease A (RNase A) and doxorubicin (DOX). Two polymers, PEG-b-P(Asp-co-AspDA) and PAE-b-P(Asp-co-AspPBA), and two 2-acetylphenylboronic acid (2-APBA)-functionalized drugs, 2-APBA-RNase A and 2-APBA-DOX, self-assemble into mixed-shell nanoparticles (RNase A/DOX@MNPs) via dynamic phenylboronic acid (PBA)-catechol bond between PBA and dopamine (DA) moieties. The PBA-catechol bond endows the nanoparticles with high stability and excellent stimulus-responsive drug release behavior. Under the slight acidic environment at tumor tissue, RNase A/DOX@MNPs are positively charged, promoting their endocytosis. Upon cellular uptake into endosome, further protonation of PAE chains leads to the rupture of endosomes because of the proton sponge effect and the cleavage of PBA-catechol bond promotes the release of two drugs. In cytoplasm, the high level of GSH removed the modification of 2-APBA on drugs. The restored RNase A and DOX show a synergistic and enhanced antic-cancer effect. This system may be a promising platform for intracellular co-delivery of protein drugs and chemotherapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request. The author’s contact information: shilinqi@nankai.edu.cn (LQ.S.), marujiang@nankaiiedu.cn (R.J.M.)

References

  1. Chung, J. E.; Tan, S.; Gao, S. J.; Yongvongsoontorn, N.; Kim, S. H.; Lee, J. H.; Choi, H. S.; Yano, H.; Zhuo, L.; Kurisawa, M.; Ying, J. Y. Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy. Nat. Nanotechnol. 2014, 9, 907–912.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Leader, B.; Baca, Q. J.; Golan, D. E. Protein therapeutics: a summary and pharmacological classification. Nat. Rev. Drug Discov. 2008, 7, 21–39.

    Article  CAS  PubMed  Google Scholar 

  3. Vermonden, T.; Censi, R.; Hennink, W. E. Hydrogels for protein delivery. Chem. Rev. 2012, 112, 2853–2888.

    Article  CAS  PubMed  Google Scholar 

  4. Yang, Z. C.; Li, Y. C.; Li, F.; Huang, Q. R.; Zhang, G.; Shi, T. F. Design and preparation of pH-responsive curdlan hydrogels as a novel protein delivery vector. Chinese J. Polym. Sci. 2016, 34, 280–287.

    Article  CAS  Google Scholar 

  5. Stewart, M. P.; Langer, R.; Jensen, K. F. Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem. Rev. 2018, 118, 7409–7531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fu, L. Y.; Hua, X. W.; Jiang, X. Y.; Shi, J. J. Multistage systemic and cytosolic protein delivery for effective cancer treatment. Nano Lett. 2022, 22, 111–118.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Nischan, N.; Herce, H. D.; Natale, F.; Bohlke, N.; Budisa, N.; Cardoso, M. C.; Hackenberger, C. P. R. Covalent attachment of cyclic TAT peptides to GFP results in protein delivery into live cells with immediate bioavailability. Angew. Chem. Int. Ed. 2015, 54, 1950–1953.

    Article  CAS  Google Scholar 

  8. Antonio, J. P. M.; Russo, R.; Carvalho, C. P.; Cal, P. M. S. D.; Gois, P. M. P. Boronic acids as building blocks for the construction of therapeutically useful bioconjugates. Chem. Soc. Rev. 2019, 48, 3513–3536.

    Article  CAS  PubMed  Google Scholar 

  9. Qin, X. F.; Yu, C. M.; Wei, J.; Li, L.; Zhang, C. W.; Wu, Q.; Liu, J. H.; Yao, S. Q.; Huang, W. Rational design of nanocarriers for intracellular protein delivery. Adv. Mater. 2019, 31, 1902791.

    Article  CAS  Google Scholar 

  10. Dutta, K.; Hu, D.; Zhao, B.; Ribbe, A. E.; Zhuang, J. M.; Thayumanavan, S. Templated self-assembly of a covalent polymer network for intracellular protein delivery and traceless release. J. Am. Chem. Soc. 2017, 139, 5676–5679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ren, L. F.; Lv, J.; Wang, H.; Cheng, Y. Y. A coordinative dendrimer achieves excellent efficiency in cytosolic protein and peptide delivery. Angew. Chem. Int. Ed. 2020, 59, 4711–4719.

    Article  CAS  Google Scholar 

  12. Kretzmann, J. A.; Luther, D. C.; Evans, C. W.; Jeon, T.; Jerome, W.; Gopalakrishnan, S.; Lee, Y.; Norret, M.; Iyer, K. S.; Rotello, V. M. Regulation of proteins to the cytosol using delivery systems with engineered polymer architecture. J. Am. Chem. Soc. 2021, 143, 4758–4765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Scaletti, F.; Hardie, J.; Lee, Y. W.; Luther, D. C.; Ray, M.; Rotello, V. M. Protein delivery into cells using inorganic nanoparticle-protein supramolecular assemblies. Chem. Soc. Rev. 2018, 47, 3421–3432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. He, C. L.; Tang, Z. H.; Tian, H. Y.; Chen, X. S. Co-delivery of chemotherapeutics and proteins for synergistic therapy. Adv. Drug Deliv. Rev. 2016, 98, 64–76.

    Article  CAS  PubMed  Google Scholar 

  15. Rubinfeld, B.; Upadhyay, A.; Clark, S. L.; Fong, S. E.; Smith, V.; Koeppen, H.; Ross, S.; Polakis, P. Identification and immunotherapeutic targeting of antigens induced by chemotherapy. Nat. Biotechnol. 2006, 24, 205–209.

    Article  CAS  PubMed  Google Scholar 

  16. Giantonio, B. J.; Catalano, P. J.; Meropol, N. J.; O’Dwyer, P. J.; Mitchell, E. P.; Alberts, S. R.; Schwartz, M. A.; Benson, A. B. I. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the eastern cooperative oncology group study E3200. J. Clin. Oncol. 2007, 25, 1539–1544.

    Article  CAS  PubMed  Google Scholar 

  17. Kim, C. S.; Mout, R.; Zhao, Y. L.; Yeh, Y.; Tang, R.; Jeong, Y.; Duncan, B.; Hardy, J. A.; Rotello, V. M. Co-delivery of protein and small molecule therapeutics using nanoparticle-stabilized nanocapsules. Bioconjugate Chem. 2015, 26, 950–954.

    Article  CAS  Google Scholar 

  18. Phua, S. Z. F.; Yang, G. B.; Lim, W. Q.; Verma, A.; Chen, H. Z.; Thanabalu, T.; Zhao, Y. L. Catalase-integrated hyaluronic acid as nanocarriers for enhanced photodynamic therapy in solid tumor. ACS Nano 2019, 13, 4742–4751.

    Article  CAS  PubMed  Google Scholar 

  19. Ng, D. Y. W.; Arzt, M.; Wu, Y. Z.; Kuan, S. L.; Lamla, M.; Weil, T. J. Constructing hybrid protein zymogens through protective dendritic assembly. Angew. Chem. Int. Ed. 2014, 53, 324–328.

    Article  CAS  Google Scholar 

  20. Sangsuwan, R.; Tachachartvanich, P.; Francis, M. B. Cytosolic delivery of proteins using amphiphilic polymers with 2-pyridinecarboxaldehyde groups for site-selective attachment. J. Am. Chem. Soc. 2019, 141, 2376–2383.

    Article  CAS  PubMed  Google Scholar 

  21. Liu, C. Y.; Wan, T.; Wang, H.; Zhang, S.; Ping, Y.; Cheng, Y. Y. A boronic acid-rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci. Adv. 2019, 5, eaaw8992.

    Article  Google Scholar 

  22. Huang, S.; Kong, X.; Xiong, Y. S.; Zhang, X. R.; Chen, H.; Jiang, W. Q.; Niu, Y. Z.; Xu, W. L.; Ren, C. G. An overview of dynamic covalent bonds in polymer material and their applications. Eur. Polym. J. 2020, 141, 110094.

    Article  CAS  Google Scholar 

  23. Chakma, P.; Konkolewicz, D. Dynamic covalent bonds in polymeric materials. Angew. Chem. Int. Ed. 2019, 58, 9682–9695.

    Article  CAS  Google Scholar 

  24. Chen, H.; Cui, L. Y.; Li, Y. F.; Liu, Y.; Ma, R. J.; Shi, L. Q. Phenylboronic acid functionalized polymer nanocarriers for intracellular delivery of protein drugs. Acta Polymerica Sinica (in Chinese) 2023, 54, 451–466.

    CAS  Google Scholar 

  25. Zhou, Y.; Zhai, Z. H.; Yao, Y. M.; Stant, J. C.; Landrum, S. L.; Bortner, M. J.; Frazier, C. E.; Edgar, K. J. Oxidized hydroxypropyl cellulose/carboxymethyl chitosan hydrogels permit pH-responsive, targeted drug release. Carbohydr. Polym. 2023, 300, 120213.

    Article  CAS  PubMed  Google Scholar 

  26. Liu, C. Y.; Shen, W. W.; Li, B. N.; Li, T. F.; Chang, H.; Cheng, Y. Y. Natural polyphenols augment cytosolic protein delivery by a functional polymer. Chem. Mater. 2019, 31, 1956–1965.

    Article  CAS  Google Scholar 

  27. Su, S.; Wang, Y. Y.; Du, F. S.; Lu, H.; Li, Z. C. Dynamic covalent bond-assisted programmed and traceless protein release: high loading nanogel for systemic and cytosolic delivery. Adv. Funct. Mater. 2018, 28, 1805287.

    Article  Google Scholar 

  28. Cal, P. M. S. D.; Vicente, J. B.; Pires, E.; Coelho, A. V.; Veiros, L. F.; Cordeiro, C.; Gois, P. M. P. Iminoboronates: a new strategy for reversible protein modification. J. Am. Chem. Soc. 2012, 134, 10299–10305.

    Article  CAS  PubMed  Google Scholar 

  29. Ding, X. Y.; Li, G.; Zhang, P.; Jin, E.; Xiao, C. S.; Chen, X. S. Injectable self-healing hydrogel wound dressing with cysteine-specific on-demand dissolution property based on tandem dynamic covalent bonds. Adv. Funct. Mater. 2021, 31, 2011230.

    Article  CAS  Google Scholar 

  30. Chen, D. Y.; Jin, Z. K.; Zhao, B.; Wang, Y. S.; He, Q. J. MBene as a theranostic nanoplatform for photocontrolled intratumoral retention and drug release. Adv. Mater. 2021, 33, 2008089.

    Article  CAS  Google Scholar 

  31. Springsteen, G.; Wang, B. H. Alizarin red S. as a general optical reporter for studying the binding of boronic acids with carbohydrates. Chem. Commun. 2001, 58, 1608–1609.

    Article  Google Scholar 

  32. Ma, R. J.; Wang, B. L.; Sun, P. C.; Shi, L. Q. 11B 3Q MAS NMR study on glucose-responsive micelles self-assembled from PEG-b-P(AA-co-AAPBA). Chin. J. Chem 2014, 32, 97–102.

    Article  CAS  Google Scholar 

  33. Ren, J.; Zhang, Y. X.; Zhang, J.; Gao, H. J.; Liu, G.; Ma, R. J.; An, Y. G.; Kong, D.; Shi, L. Q. pH/Sugar dual responsive core-cross-linked PIC micelles for enhanced intracellular protein delivery. Biomacromolecules 2013, 14, 3434–3443.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, Y. X.; Fu, H.; Chen, J. J.; Xu, L. L.; An, Y. L.; Ma, R. J.; Zhu, C. L.; Liu, Y.; Ma, F. H.; Shi, L. Q. Holdase/foldase mimetic nanochaperone improves antibody-based cancer immunotherapy. Small Methods 2022, 7, 2201051.

    Article  Google Scholar 

  35. Cheng, T. J.; Zhang, Y. M.; Liu, J. J.; Ding, Y. X.; Ou, H. L.; Huang, F.; An, Y. G.; Liu, Y.; Liu, J. F.; Shi, L. Q. Ligand-switchable micellar nanocarriers for prolonging circulation time and enhancing targeting efficiency. ACS Appl. Mater. Interfaces 2018, 10, 5296–5304.

    Article  CAS  PubMed  Google Scholar 

  36. Yan, M.; Du, J. J.; Gu, Z.; Liang, M.; Hu, Y. F.; Zhang, W. J.; Priceman, S.; Wu, L.; Zhou, Z. H.; Liu, Z.; Segura, T.; Tang, Y.; Lu, Y. F. A novel intracellular protein delivery platform based on single-protein nanocapsules. Nat. Nanotechnol. 2010, 5, 48–53.

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Cui, L. Y.; Liu, S. N.; Wu, F.; Chen, H.; Li, Y. F.; Shi, L. Q.; Liu, Y.; Ma, R. J. Pottein@PP-Zn nanocomplex assembled by coordination of zinc ions used for intracellular protein delivery. Sci. China Chem. 2023, 66, 2354–2362.

    Article  CAS  Google Scholar 

  38. Mosquera, J.; Garcia, I.; Liz-Marzan, L. M. Cellular uptake of nanoparticles versus small molecules: a matter of size. Acc. Chem. Res. 2018, 51, 2305–2313.

    Article  CAS  PubMed  Google Scholar 

  39. Ruan, L. F.; Chen, J.; Du, C. C.; Lu, H. R.; Zhang, J. Y.; Cai, X. M.; Dou, R.; Lin, W. C.; Chai, Z. F.; Nie, G. J.; Hu, Y. Mitochondrial temperature-responsive drug delivery reverses drug resistance in lung cancer. Bioact. Mater. 2022, 13, 191–199.

    CAS  PubMed  Google Scholar 

  40. Ye, M. Z.; Han, Y. X.; Tang, J. B.; Piao, Y.; Liu, X. R.; Zhou, Z. X.; Gao, J. Q.; Rao, J. H.; Shen, Y. Q. A tumor-specific cascade amplification drug release nanoparticle for overcoming multidrug resistance in cancers. Adv. Mater. 2017, 29, 1702342.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (Nos. 2022YFA1205703 and 2022YFA1205702), the National Natural Science Foundation of China (Nos. 51773099, 51933006 and 52103183) and Haihe Laboratory of Sustainable Chemical Transformations (No. YYJC202102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin-Qi Shi or Ru-Jiang Ma.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2024_3090_MOESM1_ESM.pdf

A Dynamic Covalent Bonding-based Nanoplatform for Intracellular Co-Delivery of Protein Drugs and Chemotherapeutics with Enhanced Anti-Cancer Effect

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SN., Meng, JH., Cui, LY. et al. A Dynamic Covalent Bonding-based Nanoplatform for Intracellular Co-Delivery of Protein Drugs and Chemotherapeutics with Enhanced Anti-Cancer Effect. Chin J Polym Sci (2024). https://doi.org/10.1007/s10118-024-3090-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10118-024-3090-z

Keywords

Navigation