Skip to main content
Log in

Preparation of Self-limiting Heating Cables with Excellent Processability, Mechanical Properties and PTC Effect via Thermal and Electrical Treatments

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polymer/conductive filler composites have been widely used for the preparation of self-limiting heating cables with the positive temperature coefficient (PTC) effect. The control of conductive filler distribution and network in polymer matrix is the most critical for performance of PTC materials. In order to compensate for the destruction of the filler network structure caused by strong shearing during processing, an excessive conductive filler content is usually added into the polymer matrix, which in turn sacrifices its processability and mechanical properties. In this work, a facile post-treatment of the as-extruded cable, including thermal and electrical treatment to produce high-density polyethylene (HDPE)/carbon black (CB) cable with excellent PTC effect, is developed. It is found for the as-extruded sample, the strong shearing makes the CB particles disperse uniformly in HDPE matrix, and 25 wt% CB is needed for the formation of conductive paths. For the thermal-treated sample, a gradually aggregated CB filler structure is observed, which leads to the improvement of PTC effect and the notable reduction of CB content to 20 wt%. It is very interesting to see that for the sample with combined thermal and electrical treatment, CB particles are agglomerated and oriented along the electric field direction to create substantial conductive paths, which leads to a further decrease of CB content down to 15 wt%. In this way, self-limiting heating cables with excellent processability, mechanical properties and PTC effect have simultaneously been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gras, R.; Luong, J.; Pursch, M.; Shellie, R. A. Positive temperature coefficient compensating heating for analytical devices. Anal. Chem. 2018, 90, 6426–6430.

    Article  CAS  PubMed  Google Scholar 

  2. Kang, H. S.; Sim, S.; Shin, Y. H. A numerical study on the lightweight design of PTC heater for an electric vehicle heating system. Energies 2018, 11, 1276.

    Article  Google Scholar 

  3. Shin, Y. H.; Ahn, S. K.; Kim, S. C. Performance characteristics of PTC elements for an electric vehicle heating system. Energies 2016, 9, 813.

    Article  Google Scholar 

  4. Feng, X. M.; Ai, X. P.; Yang, H. X. A positive-temperature-coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries. Electrochem. Commun. 2004, 6, 1021–1024.

    Article  CAS  Google Scholar 

  5. Zhong, H.; Kong, C.; Zhan, H.; Zhan, C. M.; Zhou, Y. H. Safe positive temperature coefficient composite cathode for lithium ion battery. J. Power Sources 2012, 216, 273–280.

    Article  CAS  Google Scholar 

  6. Wan, Q.; Li, Q. H.; Chen, Y. J.; Wang, T. H.; He, X. L.; Gao, X. G.; Li, J. P. Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires. Appl. Phys. Lett. 2004, 84, 3085–3087.

    Article  CAS  Google Scholar 

  7. Chu, K.; Lee, S. C.; Lee, S.; Kim, D.; Moon, C.; Park, S. H. Smart conducting polymer composites having zero temperature coefficient of resistance. Nanoscale 2015, 7, 471–478.

    Article  CAS  PubMed  Google Scholar 

  8. Xu, H. P.; Wu, Y. H.; Yang, D. D.; Wang, J. R.; Xie, H. Q. Study on theories and influence factors of PTC property in polymer-based conductive composites. Rev. Adv. Mater. Sci. 2011, 27, 173–183.

    Google Scholar 

  9. Lee, J. H.; Kim, S. K.; Kim, N. H. Effects of the addition of multi-walled carbon nanotubes on the positive temperature coefficient characteristics of carbon-black-filled high-density polyethylene nanocomposites. Scripta. Mater. 2006, 55, 1119–1122.

    Article  CAS  Google Scholar 

  10. Li, Q.; Siddaramaiah; Kim, N. H.; Yoo, G. H.; Lee, J. H. Positive temperature coefficient characteristic and structure of graphite nanofibers reinforced high density polyethylene/carbon black nanocomposites. Compos. Part B-Eng. 2009, 40, 218–224.

    Article  Google Scholar 

  11. Zeng, Y.; Lu, G. X.; Wang, H.; Du, J. H.; Ying, Z.; Liu, C. Positive temperature coefficient thermistors based on carbon nanotube/polymer composites. Sci. Rep. 2014, 4, 6684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ferrara, M.; Neitzert, H. C.; Sarno, M.; Gorrasi, G.; Sannino, D.; Vittoria, V.; Ciambelli, P. Influence of the electrical field applied during thermal cycling on the conductivity of LLDPE/CNT composites. Physica E 2007, 37, 66–71.

    Article  CAS  Google Scholar 

  13. Tsai, C. S.; Liu, C. I.; Tsao, K. Y.; Chen, K. N.; Yeh, J. T.; Huang, C. Y. Effect of Initiator on the over-voltage positive temperature coefficient of linear low density polyethylene/carbon black nano composites. Macromol. Symp. 2009, 286, 125–134.

    Article  CAS  Google Scholar 

  14. Bystrov, V. S.; Bdikin, I. K.; Silibin, M. V.; Meng, X. J.; Lin, T.; Wang, J. L.; Karpinsky, D. V.; Bystrova, A. V.; Paramonova, E. V. Pyroelectric properties of ferroelectric composites based on polyvinylidene fluoride (PVDF) with graphene and graphene oxide. Ferroelectrics 2019, 541, 17–24.

    Article  CAS  Google Scholar 

  15. He, L. X.; Tjong, S. C. Electrical behavior and positive temperature coefficient effect of graphene/polyvinylidene fluoride composites containing silver nanowires. Nanoscale Res. Lett. 2014, 9, 375.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jiang, S. L.; Yu, Y.; Xie, J. J.; Wang, L. P.; Zeng, Y. K.; Fu, M.; Li, T. Positive temperature coefficient properties of multiwall carbon nanotubes/poly(vinylidene fluoride) nanocomposites. J. Appl. Polym. Sci. 2010, 116, 838–842.

    Article  CAS  Google Scholar 

  17. Liu, Y. W.; Wang, B. M.; Zhan, Q. F.; Tang, Z. H.; Yang, H. L.; Liu, G.; Zuo, Z. H.; Zhang, X. S.; Xie, Y. L.; Zhu, X. J.; Chen, B.; Wang, J. L.; Li, R. W. Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites. Sci. Rep. 2014, 4, 6615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, G. J.; Hu, C.; Zhai, W.; Zhao, S. G.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. Particle size induced tunable positive temperature coefficient characteristics in electrically conductive carbon nanotubes/polypropylene composites. Mater. Lett. 2016, 182, 314–317.

    Article  CAS  Google Scholar 

  19. Zhao, S. G.; Li, G. J.; Liu, H.; Dai, K.; Zheng, G. Q.; Yan, X. R.; Liu, C. T.; Chen, J. B.; Shen, C. Y.; Guo, Z. H. Positive temperature coefficient (PTC) evolution of segregated structural conductive polypropylene nanocomposites with visually traceable carbon black conductive network. Adv. Mater. Interfaces 2017, 4, 1700265.

    Article  Google Scholar 

  20. Li, Q.; Park, O. K.; Lee, J. H. Positive temperature coefficient behavior of HDPE/EVA blends filled with carbon black. Adv. Mater. Res. 2009, 79–82, 2267–2270.

    Article  Google Scholar 

  21. Yu, G.; Zhang, Q.; Zeng, H. M.; Hou, Y. H.; Zhang, H. B. Conductive polymer blends filled with carbon black: positive temperature coefficient behavior. Polym. Eng. Sci. 1999, 39, 1678–1688.

    Article  CAS  Google Scholar 

  22. Ding, X. J.; Wang, J. W.; Zhang, S.; Wang, J.; Li, S. Q. Carbon black-filled polypropylene as a positive temperature coefficient material: effect of filler treatment and heat treatment. Polym. Bull. 2016, 73, 369–383.

    Article  CAS  Google Scholar 

  23. Zhang, R.; Tang, P.; Shi, R.; Cheng, T. Y.; Bin, Y. Z.; Hu, S. F. Improved electrical heating properties for polymer nanocomposites by electron beam irradiation. Polym. Bull. 2018, 75, 2847–2863.

    Article  CAS  Google Scholar 

  24. Zhang, X.; Zheng, S. D.; Zou, H. Z.; Zheng, X. F.; Liu, Z. Y.; Yang, W.; Yang, M. B. Two-step positive temperature coefficient effect with favorable reproducibility achieved by specific “island-bridge” electrical conductive networks in HDPE/PVDF/CNF composite. Compos. Part A-Appl. S 2017, 94, 21–31.

    Article  CAS  Google Scholar 

  25. Bin, Y.; Xu, C.; Agari, Y.; Matsuo, M. Morphology and electrical conductivity of ultrahigh-molecular-weight polyethylene-low-molecular-weight polyethylene-carbon black composites prepared by gelation crystallization from solutions. Colloid Polym. Sci. 1999, 277, 452–461.

    Article  CAS  Google Scholar 

  26. Jeon, J.; Lee, H. B. R.; Bao, Z. Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites. Adv. Mater. 2013, 25, 850–855.

    Article  CAS  PubMed  Google Scholar 

  27. Yin, C. L.; Liu, Z. Y.; Gao, Y. J.; Yang, M. B. Effect of compounding procedure on morphology and crystallization behavior of isotactic polypropylene/high-density polyethylene/carbon black ternary composites. Polym. Adv. Technol. 2012, 23, 1112–1120.

    Article  CAS  Google Scholar 

  28. Jong, Y. S.; Han, S. H.; Park, E. S. Effects of thermal aging on morphology, resistivity, and thermal properties of extruded high-density polyethylene/carbon black heating elements. Polym. Compos. 2011, 32, 1049–1061.

    Article  Google Scholar 

  29. Liang, J. Z.; Yang, Q. Q. Resistivity relaxation behavior of carbon black filled high-density polyethylene conductive composites. J. Appl. Polym. Sci. 2013, 129, 1104–1108.

    Article  CAS  Google Scholar 

  30. Lee, M. G.; Nho, Y. C. Electrical resistivity of carbon black filled high-density polyethylene composites. J. Appl. Polym. Sci. 2002, 83, 2440–2446.

    Article  CAS  Google Scholar 

  31. Seo, M. K.; Rhee, K. Y.; Park, S. J. Influence of electro-beam irradiation on PTC/NTC behaviors of carbon blacks/HDPE conducting polymer composites. Curr. Appl. Phys. 2011, 11, 428–433.

    Article  Google Scholar 

  32. Ren, D. Q.; Zheng, S. D.; Huang, S. L.; Liu, Z. Y.; Yang, M. B. Effect of the carbon black structure on the stability and efficiency of the conductive network in polyethylene composites. J. Appl. Polym. Sci. 2013, 129, 3382–3389.

    Article  CAS  Google Scholar 

  33. Song, Y. H.; Zheng, Q. Effect of voltage on the conduction of a high-density polyethylene/carbon black composite at the NTC region. Compos. Sci. Technol. 2006, 66, 907–912.

    Article  CAS  Google Scholar 

  34. Tai, X. Y.; Wu, G. Z.; Yui, H.; Asai, S.; Sumita, M. Dynamics of electric field induced particle alignment in nonpolar polymer matrix. Appl. Phys. Lett. 2003, 83, 3791–3793.

    Article  CAS  Google Scholar 

  35. Prasse, T.; Flandin, L.; Schulte, K.; Bauhofer, W. In situ observation of electric field induced agglomeration of carbon black in epoxy resin. Appl. Phys. Lett. 1998, 72, 2903–2905.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tong Wu or Qiang Fu.

Ethics declarations

The authors declare no interest conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, TH., Wu, T. & Fu, Q. Preparation of Self-limiting Heating Cables with Excellent Processability, Mechanical Properties and PTC Effect via Thermal and Electrical Treatments. Chin J Polym Sci 42, 511–520 (2024). https://doi.org/10.1007/s10118-024-3074-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-024-3074-z

Keywords

Navigation