Skip to main content
Log in

Spherical Confinement Generates Entropic Force to Accelerate Polymer Chain Detachment

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

To understand the dynamic process of polymer detachment, it is necessary to determine the mean detachment time of a single breakable link, which is modeled as a spring. Normally, this time can be viewed as the escape of a Brownian particle from the potential well of the spring. However, as the free dangling length of the polymer chain increases, the conformational entropy of the chain is affected by geometric confinement. It means that the wall exerts a repulsive force on the chain, resulting in accelerated link detachment from a macroscopic perspective. In this work, we investigate the effect of entropy on the detachment rate in the case where the substrate is spherical. We demonstrate that spherical confinement accelerates chain detachment both inside and outside the sphere. An analytical expression for the mean detachment time of breakable links is given, which includes an additional pre-factor that is related to the partition function. Additionally, we analyze the expressions for entropic forces inside the sphere, outside the sphere, and on a flat wall, comparing their magnitudes to explain the difference in mean detachment time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Claesson, P. M.; Blomberg, E.; Fröberg, J. C.; Nylander, T.; Arnebrant, T. Protein interactions at solid surfaces. Adv. Colloid Interface Sci. 1995, 57, 161–227.

    CAS  Google Scholar 

  2. Lipowsky, R. Flexible membranes with anchored polymers. Colloids Surf. A 1997, 128, 255–264.

    CAS  Google Scholar 

  3. Ayscough, K. R. In vivo functions of actin-binding proteins. Curr. Opin. Cell Biol. 1998, 10, 102–111.

    CAS  PubMed  Google Scholar 

  4. Smith, D. E.; Tans, S. J.; Smith, S. B.; Grimes, S.; Anderson, D. L.; Bustamante, C. The bacteriophage φ29 portal motor can package DNA against a large internal force. Nature 2001, 413, 748–752.

    ADS  CAS  PubMed  Google Scholar 

  5. Aliee, M.; Najafi, A. Mechanical properties of an adsorbed elastic polymer in contact with a rigid membrane. Phys. Rev. E 2008, 78, 051802.

    ADS  Google Scholar 

  6. Paturej, J.; Dubbeldam, J. A.; Rostiashvili, V. G.; Milchev, A.; Vilgis, T. A. Force spectroscopy of polymer desorption: theory and molecular dynamics simulations. Soft Matter 2014, 10, 2785–2799.

    ADS  CAS  PubMed  Google Scholar 

  7. Chaudhuri, A.; Chaudhuri, D. Forced desorption of semiflexible polymers, adsorbed and driven by molecular motors. Soft Matter 2016, 12, 2157–2165.

    ADS  CAS  PubMed  Google Scholar 

  8. Li, B.; Abel, S. M. Shaping membrane vesicles by adsorption of a semiflexible polymer. Soft Matter 2018, 14, 185–193.

    ADS  CAS  PubMed  Google Scholar 

  9. Saltzman, W. M.; Kyriakides, T. R. Cell interactions with polymers. In Principles of Tissue Engineering. 4th Ed. Academic Press, 2020, 275–293.

  10. Lee, J. H.; Gustin, J. P.; Chen, T. Vesicle-biopolymer gels: Networks of surfactant vesicles connected by associating biopolymers. Langmuir 2005, 21, 26–33.

    CAS  PubMed  Google Scholar 

  11. Skulason, H.; Frisbie, C. D. Direct detection by atomic force microscopy of single bond forces associated with the rupture of discrete charge-transfer complexes. J. Am. Chem. Soc. 2002, 124, 15125–15133.

    CAS  PubMed  Google Scholar 

  12. Stout, A. L. Detection and characterization of individual intermolecular bonds using optical tweezers. Biophy. J. 2001, 80, 2976–2986.

    ADS  CAS  Google Scholar 

  13. Hanke, F.; Livadaru, L.; Kreuzer, H. J. Adsorption forces on a single polymer molecule in contact with a solid surface. Europhys. Lett. 2005, 69, 242–248.

    ADS  CAS  Google Scholar 

  14. Kierfeld, J. Force-induced desorption and unzipping of semiflexible polymers. Phys. Rev. Lett. 2006, 97, 058302.

    ADS  CAS  PubMed  Google Scholar 

  15. Essevaz-Roulet, B.; Bockelmann, U.; Heslot, F. Mechanical separation of the complementary strands of DNA. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 11935–11940.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cocco, S.; Monasson, R.; Marko, J. F. Force and kinetic barriers to unzipping of the DNA double helix. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 8608–8613.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zou, S.; Schönherr, H.; Vancso, G. J. Stretching and rupturing individual supramolecular polymer chains by AFM. Angew. Chem. 2005, 44, 978–981.

    ADS  Google Scholar 

  18. Hugel, T.; Grosholz, M.; Clausen, S. H.; Pfau, A.; Gaub, H.; Seitz, M. Elasticity of single polyelectrolyte chains and their desorption from solid supports studied by AFM based single molecule force spectroscopy. Macromolecules 2001, 34, 1039–1047.

    ADS  CAS  Google Scholar 

  19. Benetatos, P.; Frey, E. Depinning of semiflexible polymers. Phys. Rev. E 2003, 67, 051108.

    ADS  CAS  Google Scholar 

  20. Florio, G.; Puglisi, G.; Giordano, S. Role of temperature in the decohesion of an elastic chain tethered to a substrate by onsite breakable links. Phys. Rev. Res. 2020, 2, 033227.

    CAS  Google Scholar 

  21. Paturej, J.; Milchev, A.; Rostiashvili, V. G.; Vilgis, T. A. Polymer detachment kinetics from adsorbing surface: theory, simulation and similarity to infiltration into porous medium. Macromolecules 2012, 45, 4371–4380.

    ADS  CAS  Google Scholar 

  22. Singh, N.; Singh, Y. Statistical theory of force-induced unzipping of DNA. Eur. Phys. J. E 2005, 17, 7–19.

    CAS  PubMed  Google Scholar 

  23. Jánosi, I. M.; Chrétien, D.; Flyvbjerg, H. Structural microtubule cap: stability, catastrophe, rescue, and third stat. Biophys. J. 2002, 83, 1317–1330.

    ADS  PubMed  PubMed Central  Google Scholar 

  24. Kallrot, N.; Linse, P. Dynamic study of single-chain adsorption and desorption. Macromolecules 2007, 40, 4669–4679.

    ADS  Google Scholar 

  25. Zhao, S. L.; Wu, J.; Gao, D.; Wu, J. Z. Gaussian fluctuations in tethered DNA chains. J. Chem. Phys. 2011, 134, 065103.

    ADS  PubMed  PubMed Central  Google Scholar 

  26. Lee, C. T.; Terentjev, E. M. Hard-wall entropic effect accelerates detachment of adsorbed polymer chains. Phys. Rev. E 2019, 100, 032501.

    ADS  CAS  PubMed  Google Scholar 

  27. Schweizer, K. S.; Saltzman, E. J. Entropic barriers, activated hopping, and the glass transition in colloidal suspensions. J. Chem. Phys. 2003, 119, 1181–1196.

    ADS  CAS  Google Scholar 

  28. Wozinski, A.; Iwaniszewski, J. Relaxation through an asymmetric fluctuating potential barrier. Phys. Rev. E 2009, 80, 011129.

    ADS  CAS  Google Scholar 

  29. Fiasconaro, A.; Spagnolo, B. Resonant activation in piecewise linear asymmetric potentials. Phys. Rev. E 2011, 83, 041122.

    ADS  Google Scholar 

  30. Hummer, G.; Szabo, A. Kinetics from nonequilibrium single-molecule pulling experiments. Biophys. J. 2003, 85, 5–15.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Frantz, P.; Granick, S. Kinetics of polymer adsorption and desorption. Phys. Rev. Lett. 1991, 66, 899–902.

    ADS  CAS  PubMed  Google Scholar 

  32. Frantz, P.; Granick, S. Exchange kinetics of adsorbed polymer and the achievement of conformational equilibrium. Macromolecules 1994, 27, 2553–2558.

    ADS  CAS  Google Scholar 

  33. Goeler, F. V.; Muthukumar, M. Adsorption of polyelectrolytes onto curved surfaces. J. Chem. Phys. 1994, 100, 7796–7803.

    ADS  Google Scholar 

  34. Ball, R. C.; Blunt, M.; Barford, W. Can surface bound states be induced by interfacial roughness? J. Phys. A. 1989, 22, 2587–2595.

    ADS  CAS  Google Scholar 

  35. Moore, N. W.; Kuhl, T. L. The role of flexible tethers in multiple ligand-receptor bond formation between curved surfaces. Biophys. J. 2006, 91, 1675–1687.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tanaka, M.; Sackmann E. Polymer- supported membranes as models of the cell surface. Nature 2005, 437, 656–663.

    ADS  CAS  PubMed  Google Scholar 

  37. Hänggi, P.; Talkner, P.; Borkovec, M. Reaction-rate theory: fifty years after kramers. Rev. Mod. Phys. 1990, 62, 251–341.

    ADS  MathSciNet  Google Scholar 

  38. Risken, H. The Fokker-Planck equation. Springer, Berlin, Heidelberg, 1996, Vol.18.

    Google Scholar 

  39. Chen, Z. J. Theory of wormlike polymer chains in confinement. Prog. Polym. Sci. 2016, 54, 3–46.

    MathSciNet  Google Scholar 

  40. Doi, M.; Edwards. S. F. The theory of polymer dynamics. Oxford University Press, 1988, Vol. 73.

  41. Cole, K.; Beck, J.; Haji-Sheikh A Heat conduction using Green’s function. Scitech Book News. 2010, Vol. 34.

  42. Carslaw, H. S.; Jaeger, J. C. Conduction of heat in solids. Oxford University Press, 1959.

  43. Muthukumar, M. Polymers under confinement. Adv. Chem. Phys. 2012, 749, 129–196.

    Google Scholar 

  44. Dutta, S.; Benetatos, P. Statistical ensemble inequivalence for flexible polymers under confinement in various geometries. Soft Matter 2020, 16, 2114–2127.

    ADS  CAS  PubMed  Google Scholar 

  45. VanBuren, V.; Odde, D. J.; Cassimeris, L. Estimates of lateral and longitudinal bond energies within the microtubule lattice. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 6035–6040.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zakharov, P.; Gudimchuk, N.; Voevodin, V.; Tikhonravov, A.; Ataullakhanov, F. I.; Grishchuk, E. L. Molecular and mechanical causes of microtubule catastrophe and aging. Biophys. J. 2015, 109, 2574–2591.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grebenkov, D. S. First exit times of harmonically trapped particles: a didactic review. J. Phys. A: Math. Theor. 2015, 48, 013001.

    ADS  MathSciNet  Google Scholar 

  48. Pavliotis, G. A. Stochastic processes and applications: diffusion processes, the Fokker-Planck and Langevin equations. Springer, Berlin, 2014.

  49. Gradshteyn, I. S.; Ryzhik, I. M. Table of integrals, series, and products. Academic Press, 2014.

  50. Hiergeist, C.; Lipowsky, R. Elastic properties of polymer-decorated membranes. J. Phys. II 1996, 6, 1465–1481.

    CAS  Google Scholar 

  51. Park, J. P.; Sung, W. Polymer release out of a spherical vesicle through a pore. Phys. Rev. E 1998, 57, 730–734.

    ADS  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51965057), Xinjiang Tianchi PhD Project (No. TCBS202113), the Natural Science Foundation of Xinjiang (No. 2022D01C34), Xinjiang Basic Research Funds for Universities (No. XJEDU2022P017), Robot-Intelligent Equipment Technology Innovation (No. 2022D14002) and Xinjiang Tianshan Science Technology Innovation Leading Talents Program (No. 2022TSYCLJ0044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Xu or Kai Li.

Ethics declarations

The authors declare no interest conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, YS., Zhou, JP., Xu, Y. et al. Spherical Confinement Generates Entropic Force to Accelerate Polymer Chain Detachment. Chin J Polym Sci 42, 407–416 (2024). https://doi.org/10.1007/s10118-023-3049-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3049-5

Keywords

Navigation