Skip to main content
Log in

Microphase Separation of Semiflexible Ring Diblock Copolymers

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Aiming at the difficult problem of solving the conformation statistics of complex polymers, this study presents a novel and concise conformation statistics theoretical approach based on Monte Carlo and Neural Network method. This method offers a new research idea for investigating the conformation statistics of complex polymers, characterized by its simplicity and practicality. It can be applied to more complex topological structure, more higher degree of freedom polymer systems with higher dimensions, theory research on dynamic self-consistent field theory and polymer field theory, as well as the analysis of scattering experimental data. The conformation statistics of complex polymers determine the structure and response properties of the system. Using the new method proposed in this study, taking the semiflexible ring diblock copolymer as an example, Monte Carlo simulation is used to sample this ring conformation to construct the dataset of polymer. The structure factor describing conformation statistics are expressed as continuous functions of structure parameters by neural network supervised learning. This is the innovation of this work. As an application, the structure factors represented by neural networks were introduced into the random phase approximation theory to study the microphase separation of semiflexible ring diblock copolymers. The influence of the ring’s topological properties on the phase transition behavior was pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marko, J, F. Microphase separation of block copolymer rings. Macromolecules 1993, 26, 1442–1444.

    Article  CAS  Google Scholar 

  2. Lecommandoux, S.; Borsali, R.; Schappacher, M.; Deffieux, A.; Narayanan, T.; Rochas, C. Microphase separation of linear and cyclic block copolymers poly(styrene-b-isoprene): SAXS experiments. Macromolecules 2004, 37, 1843–1848.

    Article  CAS  Google Scholar 

  3. Poelma, J. E.; Ono, K.; Miyajima, D.; Aida, T.; Satoh, K.; Hawker, C. J. Cyclic block copolymers for controlling feature sizes in block copolymer lithography. ACS Nano 2012, 6, 10845–10854.

    Article  PubMed  CAS  Google Scholar 

  4. Kapnistos, M.; Lang, M.; Vlassopoulos, D.; Pyckhout-Hintzen, W.; Richter, D.; Cho, D.; Chang, T.; Rubinstein, M. Unexpected power-law stress relaxation of entangled ring polymers. Nat. Mater. 2008, 7, 997–1002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Lee, E.; Jung, Y. Slow dynamics of ring polymer melts by asymmetric interaction of threading configuration: Monte Carlo study of a dynamically constrained lattice model. Polymers 2019, 11, 516.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Reigh, S. Y.; Yoon, D. Y. Concentration dependence of ring polymer conformationals from Monte Carlo simulations. ACS Macro Lett. 2013, 2, 296–300.

    Article  PubMed  CAS  Google Scholar 

  7. Shanbhag, S. Unusual dynamics of ring probes in linear matrices. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 169–177.

    Article  CAS  Google Scholar 

  8. Henke, S. F.; Shanbhag, S. Self-diffusion in asymmetric ring-linear blends. React. Funct. Polym. 2014, 80, 57–60.

    Article  CAS  Google Scholar 

  9. Gennes, P. G.; Witten, T. A. Scaling concepts in polymer physics. Physics 1980, 33, 51.

    Google Scholar 

  10. Leibler, L. Theory of microphase separation in block copolymers. Macromolecules 1980, 13, 34–36.

    Article  Google Scholar 

  11. Gordon, M. Modern theory of polymer solutions. Brit. Poly. J. 1972, 4, 541–542.

    Article  CAS  Google Scholar 

  12. Hammouda, B. Structure factors for regular polymer gels and networks. J. Chem. Phys. 1993, 99, 9182–9187.

    Article  CAS  Google Scholar 

  13. Herschberg, T.; Carrillo, J. M. Y.; Sumpter, B. G.; Panagiotou, E.; Kumar, R. Topological effects near order-disorder transitions in symmetric diblock copolymer melts. Macromolecules 2021, 54, 7492–7499.

    Article  CAS  Google Scholar 

  14. Qian, H. J.; Lu, Z. Y.; Chen, L. J.; Li, Z. S.; Sun, C. C. Computer simulation of cyclic block copolymer microphase separation. Macromolecules 2005, 38, 1395–1401.

    Article  CAS  Google Scholar 

  15. Qiang, Y.; Li, W. Accelerated method of self-consistent field theory for the study of gaussian ring-type block copolymers. Macromolecules 2021, 54, 9071–9078.

    Article  CAS  Google Scholar 

  16. Kim, J. U.; Yang, Y. B.; Lee, W. B. Self-consistent field theory of gaussian ring polymers. Macromolecules 2012, 45, 3263–3269.

    Article  CAS  Google Scholar 

  17. Ryu, J. H.; Kim, Y.; Lee, W. B. Inhomogeneity of block copolymers at the interface of an immiscible polymer blend. Phys. Rev. E 2018, 97, 042502.

    Article  PubMed  Google Scholar 

  18. Fokin, V. V.; Sharpless, K. B. A practical and highly efficient aminohydroxylation of unsaturated carboxylic acids. Angew. Chem. Int. Ed. 2001, 40, 3455–3457.

    Article  CAS  Google Scholar 

  19. Sun, P.; Chen, J.; Liu, J.; Zhang, K. Self-accelerating click reaction for cyclic polymer. Macromolecules 2017, 50, 1463–1472.

    Article  CAS  Google Scholar 

  20. Li, Z.; Qu, L.; Zhu, W.; Liu, J.; Chen, J. Q.; Sun, P.; Wu, Y.; Liu, Z.; Zhang, K. Self-accelerating click reaction for preparing cyclic polymers from unconjugated vinyl monomers. Polymer 2018, 137, 54–62.

    Article  CAS  Google Scholar 

  21. Kawaguchi, D. Direct observation and mutual diffusion of cyclic polymers. Polym. J. 2013, 45, 783–789.

    Article  CAS  Google Scholar 

  22. Pasquino, R.; Vasilakopoulos, T. C.; Jeong, Y. C.; Lee, H.; Rogers, S.; Sakellariou, G.; Allgaier, J.; Takano, A.; Bras, A. R.; Chang, T.; Goossen, S.; Pyckhout-Hintzen, W.; Wischnewski, A.; Hadjichristidis, N.; Richter, D.; Rubinstein, M.; Vlassopoulos, D. Viscosity of ring polymer melts. ACS Macro Lett. 2013, 2, 874–878.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Chen, W.; Chen, J.; Liu, L.; Xu, X.; An, L. Effects of chain rigidity on conformational and dynamical properties of individual ring polymers in shear flow. Macromolecules 2013, 46, 7542–7549.

    Article  CAS  Google Scholar 

  24. Takeshita, H.; Poovarodom, M.; Kiya, T.; Arai, F.; Takenaka, K.; Miya, M.; Shiomi, T. Crystallization behavior and chain folding manner of cyclic, star and linear poly(tetrahydrofuran)s. Polymer 2012, 53, 5375–5384.

    Article  CAS  Google Scholar 

  25. Kitahara, T.; Yamazaki, S.; Kimura, K. Effects of topological constraint and knot entanglement on the crystal growth of polymers proved by growth rate of spherulite of cyclic polyethylene. Kobunshi Ronbunshu. 2011, 68, 694–701.

    Article  CAS  Google Scholar 

  26. Chen, R.; Ling, J.; Hogen-Esch, T. E. Synthesis and spectroscopic studies of macrocyclic polystyrene containing two fluorene units and single 9,10-anthracenylidene group. Macromolecules 2009, 42, 6015–6022.

    Article  CAS  Google Scholar 

  27. Zhang, H.; Zhou, N.; Zhu, X.; Chen, X.; Zhang, Z.; Zhang, W.; Zhu, J.; Hu, Z.; Zhu, X. Cyclic side-chain phenylazo naphthalene polymers: enhanced fluorescence emission and surface relief grating formation. Macromol Rapid Commun. 2012, 33, 1845–1851.

    Article  PubMed  CAS  Google Scholar 

  28. Cai, Y.; Lu, J.; Zhou, F.; Zhou, X.; Zhou, N.; Zhang, Z.; Zhu, X. Cyclic amphiphilic random copolymers bearing azobenzene side chains: facile synthesis and topological effects on self-assembly and photoisomerization. Macromol Rapid Commun. 2014, 35, 901–907.

    Article  PubMed  CAS  Google Scholar 

  29. Coulembier, O.; Deshayes, G.; Surin, M.; De Winter, J.; Boon, F.; Delcourt, C.; Leclere, P.; Lazzaroni, R.; Gerbaux, P.; Dubois, P. Macrocyclic regioregular poly(3-hexylthiophene): from controlled synthesis to nanotubular assemblies. Polym. Chem. 2013, 4, 237–241.

    Article  CAS  Google Scholar 

  30. Kaitz, J. A.; Diesendruck, C. E.; Moore, J. S. Dynamic covalent macrocyclic poly(phthalaldehyde)s: scrambling cyclic homopolymer mixtures produces multi-block and random cyclic copolymers. Macromolecules 2013, 46, 8121–8128.

    Article  CAS  Google Scholar 

  31. Chen, B.; Jerger, K.; Frechet, J. M. J.; Szoka, F. C., Jr. The influence of polymer topology on pharmacokinetics: differences between cyclic and linear pegylated poly(acrylic acid) comb polymers. J. Control. Rel. 2009, 140, 203–209.

    Article  CAS  Google Scholar 

  32. Qian, Z.; Xu, X.; Amacher, J. F.; Madden, D. R.; Cormet-Boyaka, E.; Pei, D. Intracellular delivery of peptidyl ligands by reversible cyclization: discovery of a PDZ domain inhibitor that rescues CFTR activity. Angew. Chem. Int. Ed. 2015, 54, 5874–5878.

    Article  CAS  Google Scholar 

  33. Wei, H.; Chu, D. S. H.; Zhao, J.; Pahang, J. A.; Pun, S. H. Synthesis and evaluation of cyclic cationic polymers for nucleic acid delivery. ACS Macro Lett. 2013, 2, 1047–1050.

    Article  CAS  Google Scholar 

  34. Cortez, M. A.; Godbey, W. T.; Fang, Y.; Payne, M. E.; Cafferty, B. J.; Kosakowska, K. A.; Grayson, S. M. The synthesis of cyclic poly(ethylene imine) and exact linear analogues: an evaluation of gene delivery comparing polymer. architectures. J. Am. Chem. Soc. 2015, 137, 6541–6549.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 22173004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Hua Zhang.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, DY., Zhao, SD., Liu, ZX. et al. Microphase Separation of Semiflexible Ring Diblock Copolymers. Chin J Polym Sci 42, 267–276 (2024). https://doi.org/10.1007/s10118-023-3024-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3024-1

Keywords

Navigation