Skip to main content
Log in

Designs to Improve Capability of Neural Networks to Make Structural Predictions

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A deep neural network model generally consists of different modules that play essential roles in performing a task. The optimal design of a module for use in modeling a physical problem is directly related to the success of the model. In this work, the effectiveness of a number of special modules, the self-attention mechanism for recognizing the importance of molecular sequence information in a polymer, as well as the big-stride representation and conditional random field for enhancing the network ability to produce desired local configurations, is numerically studied. Network models containing these modules are trained by using the well documented data of the native structures of the HP model and assessed according to their capability in making structural predictions of unseen data. The specific network design of self-attention mechanism adopted here is modified from a similar idea in natural language recognition. The big-stride representation module introduced in this work is shown to drastically improve network’s capability to model polymer segments of strong lattice position correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, L.; Tan, X.; Wang, Z.; Zhang, X. Supramolecular polymers: historical development, preparation, characterization, and functions. Chem. Rev. 2015, 115, 7196–7239.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, X.; Wang, C. Supramolecular amphiphiles. Chem. Soc. Rev. 2011, 40, 94–101.

    Article  CAS  PubMed  Google Scholar 

  3. Elshire, R. J.; Glaubitz, J. C.; Sun, Q.; Poland, J. A.; Kawamoto, K. Buckler, E. S.; Mitchel, S. E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PloS One 2011, 6, e19379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saunders, M. G.; Voth, G. A. Coarse-graining methods for computational biology. Annual Rev. Biophys. 2013, 42, 73–93.

    Article  CAS  Google Scholar 

  5. Perilla, J. R.; Goh, B. C.; Cassidy, C. K.; Liu, B.; Bernardi, R. C.; Rudack, T.; Yu, H.; Wu, Z.; Schulten, K. Molecular dynamics simulations of large macromolecular complexes. Curr. Opin. Struct. Biol. 2015, 31, 64–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shakhnovich, E.; Farztdinov, G.; Gutin, A.; Karplus, M. Protein folding bottlenecks: A lattice Monte Carlo simulation. Phys. Rev. Lett. 1991, 67, 1665.

    Article  CAS  PubMed  Google Scholar 

  7. Scheraga, H. A.; Khalili, M.; Liwo, A. Protein-folding dynamics: overview of molecular simulation techniques. Annu. Rev. Phys. Chem. 2007, 58, 57–83.

    Article  CAS  PubMed  Google Scholar 

  8. Carrasquilla, J.; Melko, R. G. Machine learning phases of matter. Nat. Phys. 2017, 13, 431–434.

    Article  CAS  Google Scholar 

  9. Smith, J. S.; Isayev, O.; Roitberg, A. E. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci. 2017, 8, 3192–3203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schütt, K. T.; Arbabzadah, F.; Chmiela, S.; Muller; K. R.; Tkatchenko, A. Quantum-chemical insights from deep tensor neural networks. Nat. Commun. 2017, 8, 1–8.

    Article  Google Scholar 

  11. Wei, Q.; Melko, R. G.; Chen, J. Z. Y. Identifying polymer states by machine learning. Phys. Rev. E 2017, 95, 032504.

    Article  PubMed  Google Scholar 

  12. Lau, K. F.; Dill, K. A. A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules 1989, 22, 3986–3997.

    Article  CAS  Google Scholar 

  13. Dill, K. A.; MacCallum, J. L. The protein-folding problem, 50 years on. Science 2012, 338, 1042–1046.

    Article  CAS  PubMed  Google Scholar 

  14. Hossain, M. S.; Salam, A. Text-to-3D Scene Generation using Semantic Parsing and Spatial Knowledge with Rule Based System. Int. J. Comp. Sci. Issues (IJCSI) 2017, 14, 37–41.

    Article  Google Scholar 

  15. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521(7553), 436–444.

    Article  CAS  PubMed  Google Scholar 

  16. Goodfellow, I.; Bengio, Y.; Courville, A. Deep learning. MIT Press, 2016.

  17. Nielsen, M. A. Neural networks and deep learning. Determination Press San Francisco, CA, USA, 2015; Vol. 25.

    Google Scholar 

  18. Shalev-Shwartz, S.; Ben-David, S. Understanding machine learning: from theory to algorithms. Cambridge University Press, 2014.

  19. Li, J.; Zhang, H.; Chen, J. Z. Y. Structural prediction and inverse design by a strongly correlated neural network. Phys. Rev. Lett. 2019, 123, 108002.

    Article  CAS  PubMed  Google Scholar 

  20. Cheng, J.; Dong, L.; Lapata, M. Long short-term memorynetworks for machine reading. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Texas, 2016, pp. 551–561.

  21. Parikh, A. P.; Täckström, O.; Das, D.; Uszkoreit, J. A decomposable attention model for natural language inference. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Texas, 2016, pp. 2249–2255.

  22. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, L.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst., 2017.

  23. Flory, P. J. Principles of polymer chemistry. Cornell University Press, 1953.

  24. Landau, D.; Binder, K. A guide to Monte Carlo simulations in statistical physics. Cambridge University Press, 2021.

  25. Allen, M. P.; Tildesley, D. J. Computer simulation of liquids. Oxford University Press, 2017.

  26. Wang, S.; Peng, J.; Ma, J.; Xu; J. B. Protein secondary structure prediction using deep convolutional neural fields. Scient. Rep. 2016, 6, 1–11.

    Google Scholar 

  27. Chan, H. S.; Dill, K. A. Transition states and folding dynamics of proteins and heteropolymers. J. Chem. Phys. 1994, 100, 9238–9257.

    Article  Google Scholar 

  28. Please seehttps://github.com/vvoelz/HPSandbox.

  29. Wüst, T.; Landau, D. P. Versatile approach to access the low temperature thermodynamics of lattice polymers and proteins. Phys. Rev. Lett. 2009, 102, 178101.

    Article  PubMed  Google Scholar 

  30. Boškovič, B.; Brest, J. Genetic algorithm with advanced mechanisms applied to the protein structure prediction in a hydrophobic-polar model and cubic lattice. Appl. Soft Comput. 2016, 45, 61–70.

    Article  Google Scholar 

  31. Yang, C. H.; Wu, K. C.; Lin, Y. S.; Chuang; L. Y.; Chang H. W. Protein folding prediction in the HP model using ions motion optimization with a greedy algorithm. BioData Mining 2018, 11, 1–14.

    Article  Google Scholar 

  32. Li, Y. W.; Wuest, T.; Landau, D. P. Generic folding and transition hierarchies for surface adsorption of hydrophobic-polar lattice model proteins. Phys. Rev. E 2013, 87, 012706.

    Article  Google Scholar 

  33. Wu, H.; Yang, R.; Fu, Q.; Chen, J. P.; Lu, W. Z.; Li, H. O. Research on predicting 2D-HP protein folding using reinforcement learning with full state space. Bmc Bioinformatics 2019, 20.

    Google Scholar 

  34. Please see https://github.com/Titanium-ALarx7/HP-ProteinPrediction-SCN.

  35. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition, 2016; pp. 770–778.

  36. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780.

    Article  CAS  PubMed  Google Scholar 

  37. Devlin, J.; Chang, M. W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. “NAACL-HLT2019”, Minneapolis, Minnesota, 2018, pp. 4171–4186.

  38. Lafferty, J.; McCallum, A.; Pereira, F. C. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. 2001.

  39. Frauenkron, H.; Bastolla, U.; Gerstner, E.; Grassberger, P.; Nadler, W. New Monte Carlo algorithm for protein folding. Phys. Rev. Lett. 1998, 80, 3149.

    Article  CAS  Google Scholar 

  40. Thachuk, C.; Shmygelska, A.; Hoos, H. H. A replica exchange Monte Carlo algorithm for protein folding in the HP model. BMC bioinformatics 2007, 8, 1–20.

    Article  Google Scholar 

  41. Wüst, T.; Landau, D. The HP model of protein folding: A challenging testing ground for Wang-Landau sampling. Comp. Phys. Commun. 2008, 179, 124–127.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21973018 and 21534002) and the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Feng Li or Jeff Z. Y. Chen.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, TY., Li, JF., Zhang, HD. et al. Designs to Improve Capability of Neural Networks to Make Structural Predictions. Chin J Polym Sci 41, 1477–1485 (2023). https://doi.org/10.1007/s10118-023-2910-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2910-x

Keywords

Navigation