Skip to main content
Log in

Effect of Physical Aging on Heterogeneity of Poly(ε-caprolactone) Toughening Poly(lactic acid) Probed by Nanomechanical Mapping

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Poly(lactic acid) (PLA) is a promising bio-based environmentally-friendly plastic. Nevertheless, the physical aging-induced brittleness of PLA limits its widespread applications. Blending with immiscible ductile polymer is an effective way to toughen PLA. However, the underlying details of the toughening mechanism and, in particular, the effect of physical aging are not well understood. Herein, atomic force microscopy (AFM) based nanomechanical mapping technology was utilized to visualize the differences in the deformation mechanisms between unaged and aged PLA/poly(ε-caprolactone) (PCL) blend upon uniaxial drawing. Results show that physical aging has a significant effect on the microscopic Young’s modulus and its distribution of PLA matrix, resulting in a highly heterogeneous response of the PLA/PCL blend to external stress and affecting the mechanical properties of the PLA phase under different extensions. This work provides a new experimental basis for understanding the effect of physical aging on the mechanical properties of PLA-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, G.; Zhang, X.; Wang, D. Tailoring crystallization: towards high-performance poly(lactic acid). Adv. Mater. 2014, 26, 6905–6911.

    Article  CAS  Google Scholar 

  2. Fang, H. G.; Yang, K. J.; Xie, Q. Z.; Chen, X.; Wu, S. L.; Ding, Y. S. Influence of interfacial enantiomeric grafting on melt rheology and crystallization of polylactide/cellulose nanocrystals composites. Chinese J. Polym. Sci. 2022, 40, 93–106.

    Article  CAS  Google Scholar 

  3. Gu, X. Y.; Hu, L. M.; Fu, Z. A.; Wang, H. T.; Li, Y. J. Reactive TiO2 nanoparticles compatibilized PLLA/PBSU blends: fully biodegradable polymer composites with improved physical, antibacterial and degradable properties. Chinese J. Polym. Sci. 2021, 39, 1645–1656.

    Article  CAS  Google Scholar 

  4. Du, Z.; Chen, K.; Zhang, Y.; Wang, Y.; He, P.; Mi, H. Y.; Wang, Y.; Liu, C.; Shen, C. Engineering multilayered MXene/electrospun poly(lactic acid) membrane with increscent electromagnetic interference shielding (EMI) for integrated Joule heating and energy generating. Compos. Commun. 2021, 26, 100770.

    Article  Google Scholar 

  5. Wang, Y.; Wang, P.; Du, Z.; Liu, C.; Shen, C.; Wang, Y. Electromagnetic interference shielding enhancement of poly(lactic acid)-based carbonaceous nanocomposites by poly(ethylene oxide)-assisted segregated structure: a comparative study of carbon nanotubes and graphene nanoplatelets. Adv. Compos. Hybrid Mater. 2022, 5, 209–219.

    Article  CAS  Google Scholar 

  6. Zhao, Y.; Zhu, B.; Wang, Y.; Liu, C.; Shen, C. Effect of different sterilization methods on the properties of commercial biodegradable polyesters for single-use, disposable medical devices. Mater. Sci. Eng. C 2019, 105, 110041.

    Article  CAS  Google Scholar 

  7. Wang, Y.; Liu, C.; Shen, C. Crystallization behavior of poly(lactic acid) and its blends. Polym. Cryst. 2021, 4, e10171.

    CAS  Google Scholar 

  8. Wang, Y.; Gómez Ribelles, J. L.; Salmerón Sánchez, M.; Mano, J. F. Morphological contributions to glass transition in poly(L-lactic acid). Macromolecules 2005, 38, 4712–4718.

    Article  CAS  Google Scholar 

  9. Pan, P.; Zhu, B.; Inoue, Y. Enthalpy relaxation and embrittlement of poly(L-lactide) during physical aging. Macromolecules 2007, 40, 9664–9671.

    Article  CAS  Google Scholar 

  10. Cui, L.; Imre, B.; Tátraaljai, D.; Pukánszky, B. Physical ageing of poly(lactic acid): Factors and consequences for practice. Polymer 2020, 186, 122014.

    Article  CAS  Google Scholar 

  11. Nagarajan, V.; Mohanty, A. K.; Misra, M. Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance. ACS Sustain. Chem. Eng. 2016, 4, 2899–2916.

    Article  CAS  Google Scholar 

  12. Li, T.; Zhang, J.; Schneiderman, D. K.; Francis, L. F.; Bates, F. S. Toughening glassy poly(lactide) with block copolymer micelles. ACS Macro Lett. 2016, 5, 359–364.

    Article  CAS  Google Scholar 

  13. McCutcheon, C. J.; Zhao, B.; Jin, K.; Bates, F. S.; Ellison, C. J. Crazing mechanism and physical aging of poly(lactide) toughened with poly(ethylene oxide)-block-poly(butylene oxide) diblock copolymers. Macromolecules 2020, 53, 10163–10178.

    Article  CAS  Google Scholar 

  14. Haugan, I. N.; Lee, B.; Maher, M. J.; Zografos, A.; Schibur, H. J.; Jones, S. D.; Hillmyer, M. A.; Bates, F. S. Physical aging of polylactide-based graft block polymers. Macromolecules 2019, 52, 8878–8894.

    Article  CAS  Google Scholar 

  15. Razavi, M.; Wang, S. Q. Why is crystalline poly(lactic acid) brittle at room temperature. Macromolecules 2019, 52, 5429–5441.

    Article  CAS  Google Scholar 

  16. Bai, H.; Xiu, H.; Gao, J.; Deng, H.; Zhang, Q.; Yang, M.; Fu, Q. Tailoring impact toughness of poly(L-lactide)/poly(ε-caprolactone) (PLLA/PCL) blends by controlling crystallization of PLLA matrix. ACS Appl. Mater. Interfaces 2012, 4, 897–905.

    Article  CAS  Google Scholar 

  17. Todo, M.; Park, S. D.; Takayama, T.; Arakawa, K. Fracture micromechanisms of bioabsorbable PLLA/PCL polymer blends. Eng. Fract. Mech. 2007, 74, 1872–1883.

    Article  Google Scholar 

  18. Zhao, X.; Hu, H.; Wang, X.; Yu, X.; Zhou, W.; Peng, S. Super tough poly(lactic acid) blends: a comprehensive review. RSC Adv. 2020, 10, 13316.

    Article  CAS  Google Scholar 

  19. Si, W.-J.; Zhang, H.; Li, Y.-D.; Huang, C.; Weng, Y. X.; Zeng, J. B. Highly toughened and heat resistant poly(L-lactide)/poly(ε-caprolactone) blends via engineering balance between kinetics and thermodynamics of phasic morphology with stereocomplex crystallite. Compos. Part B 2020, 197, 108155.

    Article  CAS  Google Scholar 

  20. Wang, M.; Wu, Y.; Li, Y. D.; Zeng, J. B. Progress in toughening poly(lactic acid) with renewable polymers. Polym. Rev. 2017, 57, 557–593.

    Article  CAS  Google Scholar 

  21. Razavi, M.; Cheng, S.; Huang, D. D.; Zhang, S.; Wang, S. Q. Crazing and yielding in glassy polymers of high molecular weight. Polymer 2020, 197, 122445.

    Article  CAS  Google Scholar 

  22. Liu, H.; Chen, N.; Fujinami, S.; Louzguine-Luzgin, D.; Nakajima, K.; Nishi, T. Quantitative nanomechanical investigation on deformation of poly(lactic acid). Macromolecules 2012, 45, 8770–8779.

    Article  CAS  Google Scholar 

  23. Stoclet, G.; Lefebvre, J. M.; Séguéla, R.; Vanmansart, C. In-situ SAXS study of the plastic deformation behavior of polylactide upon cold-drawing. Polymer 2014, 55, 1817–1828.

    Article  CAS  Google Scholar 

  24. Donald, A. M. Crazing, in The Physics of Glassy Polymers, Haward, R. N.; Young, R. J. (Eds.). Springer, Netherlands, Dordrecht, 1997; pp. 295–341.

    Chapter  Google Scholar 

  25. Kramer, E. J. In Microscopic and molecular fundamentals of crazing, Springer Berlin Heidelberg: Berlin, Heidelberg, 1983; pp. 1–56.

    Google Scholar 

  26. Wang, S. Q.; Cheng, S.; Lin, P.; Li, X. A phenomenological molecular model for yielding and brittle-ductile transition of polymer glasses. J. Chem. Phys. 2014, 141, 094905.

    Article  Google Scholar 

  27. Starr, F. W.; Douglas, J. F.; Sastry, S. The relationship of dynamical heterogeneity to the Adam-Gibbs and random first-order transition theories of glass formation. J. Chem. Phys. 2013, 138, 12A541.

    Article  Google Scholar 

  28. Wang, D.; Liu, Y.; Nishi, T.; Nakajima, K. Length scale of mechanical heterogeneity in a glassy polymer determined by atomic force microscopy. Appl. Phys. Lett. 2012, 100, 251905.

    Article  Google Scholar 

  29. van Melick, H. G. H.; Govaert, L. E.; Meijer, H. E. H. Localisation phenomena in glassy polymers: influence of thermal and mechanical history. Polymer 2003, 44, 3579–3591.

    Article  CAS  Google Scholar 

  30. McConney, M. E.; Singamaneni, S.; Tsukruk, V. V. Probing soft matter with the atomic force microscopies: imaging and force spectroscopy. Polym. Rev. 2010, 50, 235–286.

    Article  CAS  Google Scholar 

  31. Wang, D.; Russell, T. P. Advances in atomic force microscopy for probing polymer structure and properties. Macromolecules 2018, 51, 3–24.

    Article  CAS  Google Scholar 

  32. Liu, H.; Fujinami, S.; Wang, D.; Nakajima, K.; Nishi, T. Nanomechanical mapping on the deformed poly(t-caprolactone). Macromolecules 2011, 44, 1779–1782.

    Article  CAS  Google Scholar 

  33. Wang, D.; Russell, T. P.; Nishi, T.; Nakajima, K. Atomic force microscopy nanomechanics visualizes molecular diffusion and microstructure at an interface. ACS Macro Lett. 2013, 2, 757–760.

    Article  CAS  Google Scholar 

  34. Wang, D.; Fujinami, S.; Liu, H.; Nakajima, K.; Nishi, T. Investigation of reactive polymer/polymer interface using nanomechanical mapping. Macromolecules 2010, 43, 5521–5523.

    Article  CAS  Google Scholar 

  35. Zhu, B.; Wang, Y.; Liu, H.; Ying, J.; Liu, C.; Shen, C. Effects of interface interaction and microphase dispersion on the mechanical properties of PCL/PLA/MMT nanocomposites visualized by nanomechanical mapping. Compos. Sci. Technol. 2020, 190, 108048.

    Article  CAS  Google Scholar 

  36. Zhang, S.; Liu, H.; Gou, J.; Ying, J.; Wang, Y.; Liu, C.; Shen, C. Quantitative nanomechanical mapping on poly(lactic acid)/poly(ε-caprolactone)/carbon nanotubes bionanocomposites using atomic force microscopy. Polym. Test. 2019, 77, 105904.

    Article  CAS  Google Scholar 

  37. Hutter, J. L.; Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 1993, 64, 1868–1873.

    Article  CAS  Google Scholar 

  38. Johnson, K. L.; Kendall, K.; Roberts, A. D. Surface energy and the contact of elastic solids. Proc. Royal Society of London. A. Mathemat. Phys. Sci. 1997, 324, 301–313.

    Google Scholar 

  39. Fujinami, S.; Ueda, E.; Nakajima, K.; Nishi, T. Analytical methods to derive the elastic modulus of soft and adhesive materials from atomic force microcopy force measurements. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 1279–1286.

    Article  CAS  Google Scholar 

  40. Argon, A. S. Role of heterogeneities in crazing of glassy polymers. Pure Appl. Chem. 1975, 43, 247–272.

    Article  CAS  Google Scholar 

  41. Wang, Y.; Mano, J. F. Effect of structural relaxation at physiological temperature on the mechanical property of poly(L-lactic acid) studied by microhardness measurements. J. Appl. Polym. Sci. 2006, 100, 2628–2633.

    Article  CAS  Google Scholar 

  42. Ghazaryan, G.; Schaller, R.; Feldman, K.; Tervoort, T. A. Rejuvenation of PLLA: Effect of plastic deformation and orientation on physical ageing in poly(L-lactic acid) films. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 2233–2244.

    Article  CAS  Google Scholar 

  43. van Melick, H. G. H.; Govaert, L. E.; Raas, B.; Nauta, W. J.; Meijer, H. E. H. Kinetics of ageing and re-embrittlement of mechanically rejuvenated polystyrene. Polymer 2003, 44, 1171–1179.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 52073261).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Liu or Ya-Ming Wang.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2022_2806_MOESM1_ESM.pdf

Effect of Physical Aging on Heterogeneity of Poly(ε-caprolactone) Toughening Poly(lactic acid) Probed by Nanomechanical Mapping

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, BW., Liu, H., Ying, J. et al. Effect of Physical Aging on Heterogeneity of Poly(ε-caprolactone) Toughening Poly(lactic acid) Probed by Nanomechanical Mapping. Chin J Polym Sci 41, 143–152 (2023). https://doi.org/10.1007/s10118-022-2806-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2806-1

Keywords

Navigation