Skip to main content
Log in

Non-linear Radical Additions-Coupling Polymerization of Monovinyl Monomers towards Polymer Networks: Theory, Tunability and Heritable Architecture

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Exploring new polymerization strategy for current available monomers is a big challenge in polymer science. Here we re-investigate radical polymerization of monovinyl monomer (MVM) initiated by uniform branched polyfunctional initiator (PFI), which is termed non-linear radical additions-coupling polymerization (NLRAsCP). In NLRAsCP, both addition and coupling reactions of radical contribute to the construction of the polymer chains, which leads to continuous growth of branch topology. Theoretical analysis of NLRAsCP predicts that the gelation is determined by the functionality of PFI (a), the extent of initiation of the PFI (q) and the termination factor of radical (φ). NLRAsCPs of styrene and methyl methacrylate promoted by Cu(0)/Me6TREN or Mn2(CO)10/visible light were conducted. After the cleavage of incorporated PFI fragment or junctions in the network, the network was transformed to linear chains having almost the same structure as segmental chains in the precursor network. This allows the reverse deducing the network structure from its cleaved products. It has been proven that NLRAsCP includes stepwise initiation of PFI, chain-growth of segmental chains and successive endlinking of macroradicals derived from PFI. The three parameters related to the gelation process, a, q and φ, were adjusted via binary PFI, the feed ratio of [Mn2(CO)10]/[PFI] and addition of non-homopolymerizable comonomer respectively. The minimum values of a and q, and the minimum amount of comonomer required for gelation were determined, which can be applied to estimate φ of various macroradicals. NLRAsCP opens a general and facile strategy for synthesis of a variety of polymer networks with heritable architecture by one-pot polymerization of various MVMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cianga, I.; Yagci, Y. First polyrecombination reaction via atom transfer radical coupling (ATRC), a new way for the synthesis of poly(p-xylylene). Des. Monomers Polym. 2007, 10, 575–584.

    Article  CAS  Google Scholar 

  2. Durmaz, Y. Y.; Aydogan, B.; Cianga, I.; Yagci, Y. The use of atom transfer radical coupling reactions for the synthesis of various macromolecular structures. Polym. Prepr. 2008, 49, 382–383.

    CAS  Google Scholar 

  3. Wang, C. H.; Song, Z. Y.; Deng, X. X.; Zhang, L. J.; Du, F. S.; Li, Z. C. Combination of ATRA and ATRC for the synthesis of periodic vinyl copolymers. Macromol. Rapid Commun. 2014, 35, 474–478.

    Article  CAS  Google Scholar 

  4. Liu, Z.; Wang, Q. Radical coupling copolymerization (RCCP) for synthesis of various polymers. Polymer 2016, 100, 56–59.

    Article  CAS  Google Scholar 

  5. Liu, Z.; Wang, Q. Radical coupling polymerization (RCP) for synthesis of various polymers. RSC Adv. 2016, 6, 39568–39572.

    Article  CAS  Google Scholar 

  6. Li, C.; Wang, Q. Characterization of polymer network by combination of tailored synthesis and direct analysis of its decrosslinked components. Polymer 2016, 99, 594–597.

    Article  CAS  Google Scholar 

  7. Zhang, C.; Wang, Q. Degradable multisegmented polymers synthesized by consecutive radical addition-coupling reaction of alpha, omega-macrobiradicals and nitroso compound. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 612–618.

    Article  CAS  Google Scholar 

  8. Zhang, C.; Wang, Q. Step-growth radical addition-coupling polymerization (RACP) for synthesis of alternating copolymers. Macromol. Rapid Commun. 2011, 32, 1180–1184.

    Article  CAS  Google Scholar 

  9. Zhang, C.; Ling, J.; Wang, Q. Radical addition-coupling polymerization (RACP) toward periodic copolymers. Macromolecules 2011, 44, 8739–8743.

    Article  CAS  Google Scholar 

  10. Zhu, Q.; Wang, Q. Thermodegradable multisegmented polymer synthesized by consecutive radical addition-coupling reaction of α, ω)-macrobiradicals and dithioester. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 2029–2036.

    Article  CAS  Google Scholar 

  11. Zhang, C.; Wang, Q. Block copolymers prepared by polymeric radical addition cross-coupling reaction to different double bonds. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2817–2823.

    Article  CAS  Google Scholar 

  12. Li, J.; Wang, Q. Radical addition-coupling polymerization with various nitroso compounds. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 810–815.

    Article  CAS  Google Scholar 

  13. Tao, F.; Li, J.; Wang, Q. Aqueous radical addition-coupling polymerization for the synthesis of hydrophilic periodic polymer. RSC Adv. 2014, 4, 53253–53256.

    Article  CAS  Google Scholar 

  14. Tao, F.; Wang, Q. Aqueous radical addition-coupling polymerization using a nitroso benzene/cyclodextrin complex for the synthesis of a hydrophilic periodic polymer. RSC Adv. 2015, 5, 46007–46010.

    Article  CAS  Google Scholar 

  15. Liu, Z.; Wang, Q. Radical addition-coupling polymerization (RACP) of various benzyl-type biradical toward periodic polymers. Polymer 2016, 94, 14–18.

    Article  CAS  Google Scholar 

  16. Liu, Y.; Fan, Z. Well-defined gels prepared by radical addition-coupling polymerization. Des. Monomers Polym. 2015, 18, 251–261.

    Article  CAS  Google Scholar 

  17. Liu, Y.; Fan, Z. Novel hyperbranched polymers synthesized via A3+B(B’) approach by radical addition-coupling polymerization. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 904–913.

    Article  CAS  Google Scholar 

  18. Bamford, C. H.; Dyson, R. W.; Eastmond, G. C. Studies in network formation. J. Polym. Sci., Part C: Polym. Symp. 1967, 16, 2425–2434.

    Article  Google Scholar 

  19. Bamford, C. H.; Dyson, R. W.; Eastmond, G. C. Network formation IV. The nature of the termination reaction in free-radical polymerization. Polymer 1969, 10, 885–899.

    Article  CAS  Google Scholar 

  20. Flory, P. J. Molecular size distribution in three dimensional polymers. III. Tetrafunctional branching units. J. Am. Chem. Soc. 1941, 63, 3096–3100.

    Article  CAS  Google Scholar 

  21. Gao, H. F.; Tsarevsky, N. V.; Matyjaszewski, K. Synthesis of degradable miktoarm star copolymers via atom transfer radical polymerization. Macromolecules 2005, 38, 5995–6004.

    Article  CAS  Google Scholar 

  22. Kannurpatti, A. R.; Anderson, K. J.; Anseth, J. W.; Bowman, C. N. Use of “living” radical polymerizations to study the structural evolution and properties of highly crosslinked polymer networks. J. Polym. Sci., Part B: Polym. Phys. 1997, 35, 2297–2307.

    Article  CAS  Google Scholar 

  23. Yu, Q.; Zeng, F. Q.; Zhu, S. P. Atom transfer radical polymerization of poly(ethylene glycol) dimethacrylate. Macromolecules 2001, 34, 1612–1618.

    Article  CAS  Google Scholar 

  24. Isaure, F.; Cormack, P. A. G.; Graham, S.; Sherrington, D. C.; Armes, S. P.; Butun, V. Synthesis of branched poly(methyl methacrylate)s via controlled/living polymerisations exploiting ethylene glycol dimethacrylate as branching agent. Chem. Commun. 2004, 1138–1139.

  25. Hutchison, J. B.; Stark, P. F.; Hawker, C. J.; Anseth, K. S. Polymerizable living free radical initiators as a platform to synthesize functional networks. Chem. Mater. 2005, 17, 4789–4797.

    Article  CAS  Google Scholar 

  26. Wang, A. R.; Zhu, S. P. Branching and gelation in atom transfer radical polymerization of methyl methacrylate and ethylene glycol dimethacrylate. Polym. Engin. Sci. 2005, 45, 720–727.

    Article  CAS  Google Scholar 

  27. Wang, A. R.; Zhu, S. P. Control of the polymer molecular weight in atom transfer radical polymerization with branching/crosslinking. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 5710–5714.

    Article  CAS  Google Scholar 

  28. Tsarevsky, N. V.; Matyjaszewski, K. Combining atom transfer radical polymerization and disulfide/thiol redox chemistry: a route to well-defined (bio)degradable polymeric materials. Macromolecules 2005, 38, 3087–3092.

    Article  CAS  Google Scholar 

  29. Li, Y. T.; Armes, S. P. Synthesis and chemical degradation of branched vinyl polymers prepared via ATRP: use of a cleavable disulfide-based branching agent. Macromolecules 2005, 38, 8155–8162.

    Article  CAS  Google Scholar 

  30. Bannister, I.; Billingham, N. C.; Armes, S. P.; Rannard, S. P.; Findlay, P. Development of branching in living radical copolymerization of vinyl and divinyl monomers. Macromolecules 2006, 39, 7483–7492.

    Article  CAS  Google Scholar 

  31. Gao, H.; Min, K.; Matyjaszewski, K. Determination of gel point during atom transfer radical copolymerization with cross-linker. Macromolecules 2007, 40, 7763–7770.

    Article  CAS  Google Scholar 

  32. Yu, Q.; Zhou, M.; Ding, Y.; Jiang, B.; Zhu, S. Development of networks in atom transfer radical polymerization of dimethacrylates. Polymer 2007, 48, 7058–7064.

    Article  CAS  Google Scholar 

  33. Gao, H. F.; Li, W. W.; Matyjaszewski, K. Synthesis of polyacrylate networks by ATRP: parameters influencing experimental gel points. Macromolecules 2008, 41, 2335–2340.

    Article  CAS  Google Scholar 

  34. Weiss, P.; Hild, G.; Herz, J.; Rempp, P. Preparation of crosslinked gels by anionic block-polymerization of styrene and divinylbenzene. Makromol. Chem. 1970, 135, 249–261.

    Article  CAS  Google Scholar 

  35. Beinert, G.; Belkebirmrani, A.; Herz, J.; Hild, G.; Rempp, P. New crosslinking processes. Faraday Discuss. Chem. Soc. 1974, 57, 27–34.

    Article  CAS  Google Scholar 

  36. Herz, J.; Rempp, P.; Borchard, W. Model Networks. Adv. Polym. Sci. 1978, 26, 105–135.

    Article  CAS  Google Scholar 

  37. Hild, G. Model networks based on ‘endlinking’ processes: Synthesis, structure and properties. Prog. Polym. Sci. 1998, 23, 1019–1149.

    Article  CAS  Google Scholar 

  38. Narita, M.; Nomurat, R.; Tomita, I.; Endo, T. Living polymerization of methyl methacrylate by novel samarium-based trifunctional initiator. Polym. Bull. 2000, 45, 231–236.

    Article  CAS  Google Scholar 

  39. Matyjaszewski, K.; Miller, P. J.; Pyun, J.; Kickelbick, G.; Diamanti, S. Synthesis and characterization of star polymers with varying arm number, length, and composition from organic and hybrid inorganic/organic multifunctional initiators. Macromolecules 1999, 32, 6526–6535.

    Article  CAS  Google Scholar 

  40. Stenzel-Rosenbaum, M. H.; Davis, T. P.; Chen, V. K.; Fane, A. G. Synthesis of poly(styrene) star polymers grown from sucrose, glucose, and cyclodextrin cores via living radical polymerization mediated by a half-metallocene iron carbonyl complex. Macromolecules 2001, 34, 5433–5438.

    Article  CAS  Google Scholar 

  41. Durand, D.; Bruneau, C. M. General expressions of average molecular-weights in condensation polymerization of polyfunctional monomers. Br. Polym. J. 1979, 11, 194–198.

    Article  CAS  Google Scholar 

  42. Durand, D.; Bruneau, C. M. Statistics of random macromolecular networks. 1. Stepwise polymerization of polyfunctional monomers bearing identical reactive groups. Makromol. Chem. 1982, 183, 1007–1020.

    Article  CAS  Google Scholar 

  43. Zammit, M. D.; Davis, T. P.; Haddleton, D. M.; Suddaby, K. G. Evaluation of the mode of termination for a thermally initiated free-radical polymerization via matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Macromolecules 1997, 30, 1915–1920.

    Article  CAS  Google Scholar 

  44. Moad, G.; Solomon, D. H. 5 — Termination. In The chemistry of radical polymerization (Second Edition), Moad, G.; Solomon, D. H., Eds. Elsevier Science Ltd: Amsterdam, 2005; pp. 233–278.

    Chapter  Google Scholar 

  45. Feng, X. S.; Pan, C. Y. Synthesis and characterization of star polymers initiated by hexafunctional discotic initiator through atom transfer radical polymerization. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 2233–2243.

    Article  CAS  Google Scholar 

  46. Moschogianni, P.; Pispas, S.; Hadjichristidis, N. Multifunctional ATRP initiators: Synthesis of four-arm star homopolymers of methyl methacrylate and graft copolymers of polystyrene and poly(t-butyl methacrylate). J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 650–655.

    Article  CAS  Google Scholar 

  47. Francis, R.; Lepoittevin, B.; Taton, D.; Gnanou, Y. Toward an easy access to asymmetric stars and miktoarm stars by atom transfer radical polymerization. Macromolecules 2002, 35, 9001–9008.

    Article  CAS  Google Scholar 

  48. Carlmark, A.; Vestberg, R.; Jonsson, E. M. Atom transfer radical polymerization of methyl acrylate from a multifunctional initiator at ambient temperature. Polymer 2002, 43, 4237–4242.

    Article  CAS  Google Scholar 

  49. Strandman, S.; Luostarinen, M.; Niemela, K.; Tenhu, H.; Rissanen, K. Resorcinarene-based ATRP initiators for star polymers. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 4189–4201.

    Article  CAS  Google Scholar 

  50. Huang, C. F.; Lee, H. F.; Kuo, S. W.; Xu, H. Y.; Chang, F. C. Star polymers via atom transfer radical polymerization from adamantane-based cores. Polymer 2004, 45, 2261–2269.

    Article  CAS  Google Scholar 

  51. Lepoittevin, B.; Matmour, R.; Francis, R.; Taton, D.; Gnanou, Y. Synthesis of dendrimer-like polystyrene by atom transfer radical polymerization and investigation of their viscosity behavior. Macromolecules 2005, 38, 3120–3128.

    Article  CAS  Google Scholar 

  52. Jankova, K.; Bednarek, M.; Hvilsted, S. Star polymers by ATRP of styrene and acrylates employing multifunctional initiators. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 3748–3759.

    Article  CAS  Google Scholar 

  53. Kimani, S. M.; Moratti, S. C. Synthesis of five-arm star polymers with an inositol core by atom transfer radical polymerisation at ambient temperature. Macromol. Rapid Commun. 2006, 27, 1887–1893.

    Article  CAS  Google Scholar 

  54. Buss, B. L.; Beck, L. R.; Miyake, G. M. Synthesis of star polymers using organocatalyzed atom transfer radical polymerization through a core-first approach. Polym. Chem. 2018, 9, 1658–1665.

    Article  CAS  Google Scholar 

  55. Jochi, Y.; Seki, T.; Soejima, T.; Satoh, K.; Kamigaito, M.; Takeoka, Y. Spontaneous synthesis of a homogeneous thermoresponsive polymer network composed of polymers with a narrow molecular weight distribution. Npg Asia Mater. 2018, 10, 840–848.

    Article  CAS  Google Scholar 

  56. Gilbert, B. C.; Harrison, R. J.; Lindsay, C. I.; McGrail, P. T.; Parsons, A. F.; Southward, R.; Irvine, D. J. Polymerization of methyl methacrylate using dimanganese decacarbonyl in the presence of organohalides. Macromolecules 2003, 36, 9020–9023.

    Article  CAS  Google Scholar 

  57. Haines, L. I. B.; PoË, A. J. Initiation of vinyl polymerization by manganese carbonyl and carbon tetrachloride. Nature 1967, 215, 699–701.

    Article  CAS  Google Scholar 

  58. Schreck, V. A.; Serelis, A. K.; Solomon, D. H. Self-reactions of 1,3-diphenylpropyl and 1,3,5-triphenylpentyl radicals: models for termination in styrene polymerization. Aust. J. Chem. 1989, 42, 375–393.

    Article  CAS  Google Scholar 

  59. Bizilj, S.; Kelly, D. P.; Serelis, A. K.; Solomon, D. H.; White, K. E. The self-reactions of 1-methoxycarbonyl-1-methylethyl and higher ester radicals: combination vs disproportionation and oligomeric products from secondary reactions. Aust. J. Chem. 1985, 38, 1657–1673.

    Article  CAS  Google Scholar 

  60. Gao, J.; Wang, Q. Polyacrylates networks synthesized by endlinking of 3-armed precursor via radical addition coupling reaction. RSC Adv. 2016, 6, 61615–61619.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Additional information

Notes

The authors declare no competing financial interest.

Electronic supplementary material

10118_2022_2788_MOESM1_ESM.pdf

Non-linear Radical Additions-Coupling Polymerization of Monovinyl Monomers towards Polymer Networks: Theory, Tunability and Heritable Architecture

Supplementary material, approximately 4.99 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, LM., Li, CL. & Wang, Q. Non-linear Radical Additions-Coupling Polymerization of Monovinyl Monomers towards Polymer Networks: Theory, Tunability and Heritable Architecture. Chin J Polym Sci 40, 1623–1630 (2022). https://doi.org/10.1007/s10118-022-2788-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2788-z

Keywords

Navigation