Skip to main content
Log in

Copolymerization of PO/CO2 and Lactide by a Dinuclear Salen-Cr(III) Complex: Gradient and Random Copolymers with Modificable Microstructure

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Copolymerization of propylene oxide (PO)/carbon dioxide (CO2) and lactide (LA) is achievable to form new copolymers, combining the advantages of both poly(propylene carbonate) (PPC) and polylactide (PLA). In this study, we designed a dinuclear Salen-Cr(III) complex, which showed higher efficiency for copolymerization of PO/CO2 and LA than that of mononuclear Salen-Cr(III) complex. Besides, we successfully obtained gradient and random copolymers of PPC-PLA in one pot. Furthermore, by adjusting reaction temperature, block ratios of PPC/PLA in copolymers were controllable (block ratio of PPC/PLA=1.0 at 40 °C, while block ratio of PPC/PLA=0.5 at room temperature). While increasing the reaction temperature to 60 °C, conversion of LA was much faster than that of PO so that gradient copolymers were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Inoue, S.; Tsuruta, T. Copolymerization of carbon dioxide and epoxide. J. Polym. Sci., Part B: Polym. Lett. 1969, 7, 287–292.

    Article  CAS  Google Scholar 

  2. Nakano, K.; Hashimoto, S.; Nakamura, M.; Kamada, T.; Nozaki, K. Stereocomplex of poly(propylene carbonate): synthesis of stereogradient poly(propylene carbonate) by regio- and enantioselective copolymerization of propylene oxide with carbon dioxide. Angew. Chem. Int. Ed. 2011, 50, 4868–4871.

    Article  CAS  Google Scholar 

  3. Liu, Y.; Ren, W. M.; Wang, M.; Liu, C.; Lu, X. B. Crystalline stereocomplexed polycarbonates: hydrogen-bond-driven interlocked orderly assembly of the opposite enantiomers. Angew. Chem. Int. Ed. 2015, 54, 2241–2244.

    Article  CAS  Google Scholar 

  4. Sujith, S.; Seong, J. E.; Na, S. J.; Lee, B. Y. A highly active and recyclable catalytic system for CO2/propylene oxide copolymerization. Angew. Chem. Int. Ed. 2008, 47, 7306–7309.

    Article  CAS  Google Scholar 

  5. Madhavan, N. K.; Nair, N. R.; John, R. P. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010, 101, 8493–8501.

    Article  Google Scholar 

  6. Hu, C. Y.; Duan, R. L.; Sun, Z. Q.; Pang, X.; Wang, X. H.; Chen, X. S. Enolic Schiff base zinc amide complexes: highly active catalysts for ring-opening polymerization of lactide and e-caprolactone. Chinese J. Polym. Sci. 2018, 36, 1123–1128.

    Article  CAS  Google Scholar 

  7. Duan, R. L.; Zhou, Y. C.; Sun, Z. Q.; Huang, Y. Z.; Pang, X; Chen, X. S. The effect of oxygen to salen-Co complexes for the copolymerization of PO/CO2. Chinese J. Polym. Sci. 2020, 38, 1124–1130.

    Article  CAS  Google Scholar 

  8. Feng, L. D.; Bian, X. C.; Li, G.; Chen, X. S. Effect of exogenous carboxyl and hydroxyl groups on pyrolysis reaction of high molecular weight poly(L-lactide) under the catalysis of Tin. Chinese J. Polym. Sci. 2021, 39, 966–974.

    Article  CAS  Google Scholar 

  9. Li, Y.; Yu, Y. C.; Han, C. Y.; Wang, X. H.; Huang, D. X. Sustainable blends of poly(propylene carbonate) and stereocomplex polylactide with enhanced rheological properties and heat resistance. Chinese J. Polym. Sci. 2020, 38, 1267–1275.

    Article  CAS  Google Scholar 

  10. Huang, Y. Z.; Hu, C. Y.; Zhou, Y. C.; Duan, R. L.; Sun, Z. Q.; Wan, P. Q.; Xiao, C. S.; Pang, X. and Chen, X. S. Monomer controlled switchable copolymerization: a feasible route for the functionalization of poly(lactide). Angew. Chem. Int. Ed. 2021, 60, 9274–9278.

    Article  CAS  Google Scholar 

  11. Nakano, K.; Kamada, T.; Nozaki, K. Selective formation of polycarbonate over cyclic carbonate: copolymerization of epoxides with carbon dioxide catalyzed by a cobalt(III) complex with a piperidinium end-capping arm. Angew. Chem. Int. Ed. 2006, 45, 7274–7277.

    Article  CAS  Google Scholar 

  12. Liu, Y.; Zhou, H.; Guo, J. Z.; Ren, W. M.; Lu, X. B. Completely recyclable monomers and polycarbonate: approach to sustainable polymers. Angew. Chem. Int. Ed. 2017, 56, 4862–4866.

    Article  CAS  Google Scholar 

  13. Klaus, S.; Lehenmeier, M. W.; Anderson, C. E.; Rieger, B. Recent advances in CO2/epoxide copolymerization-new strategies and cooperative mechanisms. Coord. Chem. Rev. 2011, 255, 1460–1479.

    Article  CAS  Google Scholar 

  14. Lu, X. B.; Ren, W. M.; Wu, G. P. CO2 copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control. Acc. Chem. Res. 2012, 45, 1721–1735.

    Article  CAS  Google Scholar 

  15. Noh, E. K.; Na, S. J.; Sujith, S.; Kim, S. W.; Lee, B. Y. Two components in a molecule: highly efficient and thermally robust catalytic system for CO2/epoxide copolymerization. J. Am. Chem. Soc. 2007, 129, 8082–8083.

    Article  CAS  Google Scholar 

  16. Li, X.; Hu, C. Y.; Pang, X.; Duan, R. L.; Chen, X. S. One-pot copolymerization of epoxides/carbon dioxide and lactide using a ternary catalyst system. Catal. Sci. Technol. 2018, 8, 6452–6457.

    Article  CAS  Google Scholar 

  17. Pang, X.; Duan, R. L.; Li, X.; Hu, C. Y.; Wang, X. H.; Chen, X. S. Breaking the paradox between catalytic activity and stereoselectivity: rac-lactide polymerization by trinuclear salen-Al complexes. Macromolecules 2018, 51, 906–913.

    Article  CAS  Google Scholar 

  18. Hu, C. Y.; Duan, R. L.; Yang, S. C.; Pang, X.; Chen, X. S. CO2 controlled catalysis: switchable homopolymerization and copolymerization. Macromolecules 2018, 51, 4699–4704.

    Article  CAS  Google Scholar 

  19. Darensbourg, D. J.; Wu, G. P. A one-pot synthesis of a triblock copolymer from propylene oxide/carbon dioxide and lactide: Intermediacy of polyol initiators. Angew. Chem. Int. Ed. 2013, 52, 10602–10606.

    Article  CAS  Google Scholar 

  20. Wu, G. P.; Darensbourg, D. J.; Lu, X. B. Tandem metalcoordination copolymerization and organocatalytic ringopening polymerization via water to synthesize diblock copolymers of styrene oxide/CO2 and lactide. J. Am. Chem. Soc. 2012, 134, 17739–17745.

    Article  CAS  Google Scholar 

  21. Wu, G. P.; Darensbourg, D. J. Mechanistic insights into watermediated tandem catalysis of metal-coordination CO2/epoxide copolymerization and organocatalytic ring-opening polymerization: one-pot, two steps, and three catalysis cycles for triblock copolymers synthesis. Macromolecules 2016, 49, 807–814.

    Article  CAS  Google Scholar 

  22. Kember, M. R.; Copley, J.; Buchard, A.; Williams, C. K. Triblock copolymers from lactide and telechelic poly(cyclohexene carbonate). Polym. Chem. 2012, 3, 1196–1201.

    Article  CAS  Google Scholar 

  23. Xie, D.; Yang, Z. X.; Wu, L. L.; Zhang, C. C.; Chisholm, M. H. One-pot regioselective and stereoselective terpolymerization of raclactide, CO2 and rac-propylene oxide with TPPMCl (M = Cr, Co, Al)/PPNCl binary catalyst. Polym. Int. 2018, 67, 883–893.

    Article  CAS  Google Scholar 

  24. Li, X.; Hu, C. Y.; Duan, R. L.; Liang, Z. Z.; Pang, X.; Deng, M. X. Efficient ternary catalyst system for the copolymerization of lactide, epoxides and CO2: new insights into the cooperative mechanism. Polym. Chem. 2021, 12, 3124–3131.

    Article  CAS  Google Scholar 

  25. Li, X.; Duan, R. L.; Hu, C. Y.; Pang, X.; Deng, M. X. Copolymerization of lactide, epoxides and carbon dioxide: a highly efficient heterogeneous ternary catalyst system. Polym. Chem. 2021, 12, 1700–1706.

    Article  CAS  Google Scholar 

  26. Duan, R. L.; Hu, C. Y.; Sun, Z. Q.; Zhang, H.; Pang, X.; Chen, X. S. Conjugated tri-nuclear salen-Co complexes for the copolymerization of epoxides/CO2: cocatalyst-free catalysis. Green Chem. 2019, 21, 4723–4731.

    Article  CAS  Google Scholar 

  27. Veronese, L.; Brivio, M.; Biagini, P.; Po, R.; Tritto, I.; Losio, S.; Boggioni, L. Effect of quaternary phosphonium salts as cocatalysts on epoxide/CO2 copolymerization catalyzed by salentype Cr(III) complexes. Organometallics 2020, 39, 2653–2664.

    Article  CAS  Google Scholar 

  28. Wu, H. L.; Yang, J. L.; Luo, M.; Wang, R. Y.; Xu, J. T.; Du, B. Y.; Zhang, X. H.; Darensbourg, D. J. Poly(trimethylene monothiocarbonate) from the alternating copolymerization of COS and oxetane: a semicrystalline copolymer. Macromolecules 2016, 49, 8863–8868.

    CAS  Google Scholar 

  29. Li, B.; Zhang, R.; Lu, X. B. Stereochemistry control of the alternating copolymerization of CO2 and propylene oxide catalyzed by salenCrX complexes. Macromolecules 2007, 40, 2303–2307.

    Article  CAS  Google Scholar 

  30. Li, X.; Duan, R. L.; Pang, X.; Gao, B.; Wang, X. H.; Chen, X. S. Rigid linked dinuclear salph-Co(III) catalyst for carbon dioxide/epoxides copolymerization. Appl. Catal. B 2016, 182, 580–586.

    Article  CAS  Google Scholar 

  31. Castro-Osma, J. A.; Lamb, K. J.; North, M. Cr(salophen) complex catalyzed cyclic carbonate synthesis at ambient temperature and pressure. ACS Catal. 2016, 6, 5012–5025.

    Article  CAS  Google Scholar 

  32. Balasanthiran, V.; Chatterjee, C.; Chisholm, M. H.; Harrold, N. D.; RajanBabu, T. V.; Warren, G. A. Coupling of propylene oxide and lactide at a porphyrin chromium(III) center. J. Am. Chem. Soc. 2015, 137, 1786–1789.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (No. 2021YFA1501700), the National Natural Science Foundation of China, Basic Science Center Program (No. 51988102) and the National Natural Science Foundation of China (No. 52073272).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuan Pang or Xue-Si Chen.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Material

10118_2022_2727_MOESM1_ESM.pdf

Copolymerization of PO/CO2 and Lactide by a Dinuclear Salen-Cr(III) Complex: Gradient and Random Copolymers with Modificable Microstructure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, ZZ., Li, X., Hu, CY. et al. Copolymerization of PO/CO2 and Lactide by a Dinuclear Salen-Cr(III) Complex: Gradient and Random Copolymers with Modificable Microstructure. Chin J Polym Sci 40, 1028–1033 (2022). https://doi.org/10.1007/s10118-022-2727-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2727-z

Keywords

Navigation