Skip to main content

Advertisement

Log in

Polymerizable AEE-active Dye with Optical Activity for Fluorescent Nanoparticles Based on Phenothiazine: Synthesis, Self-assembly and Biological Imaging

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In consideration of various advantages such as less harm, higher sensitivity, and deeper imaging depth, etc., AIE materials with longwave emission are attracting extensive attention in the fields of vascular visualization, organelle imaging, cells tracker, forensic detection, bioprobe and chemosensor, etc. In this work, a novel fluorescent (R)-PVHMA monomer with chirality and aggregation-induced emission enhancement (AEE) characteristics was acquired through enzymatic transesterification reaction basing on phenothiazine, and its [α] 25°CD value was about −6.39° with a 3.08 eV bandgap calculated by the quantum calculations. Afterwards, a series of PEG-PVH1 and PEG-PVH2 copolymers with chirality feature were achieved through RAFT polymerization of the obtained (R)-PVHMA and PEGMA with various feed ratios. When the feed molar ratio of (R)-PVHMA increased from 21.5% to 29.6%, its actual molar fractions in the PEG-PVH1 and PEG-PVH2 copolymers accordingly increased from 18.1% to 25.7%. The molecular weight of PEG-PVH1 was about 2.2×104 with a narrow PDI, and their kinetics estimation showed a first-order quasilinear procedure. In aqueous solution, the amphiphilic copolymers PEG-PVH could self-assemble into about 100 nm nanoparticles. In a 90% water solution of H2O and THF mixture, the fluorescence intensity had the maximum value, and the emission wavelength presented at 580 and 630 nm. The investigation of cytotoxicity and cells uptake showed that PEG-PVH FONs performed outstanding biocompatibility and excellent cells absorption effects, which have great potential in bioimaging application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liang, J.; Kwok, R. T. K.; Shi, H. B.; Tang, B. Z.; Liu, B. Fluorescent light-up probe with aggregation-induced emission characteristics for alkaline phosphatase sensing and activity study. ACS Appl. Mater. Interfaces 2013, 5, 8784–8789.

    Article  CAS  PubMed  Google Scholar 

  2. Chen, S. J.; Hong, Y. N.; Liu, Y.; Liu, J. Z.; Leung, C. W. T.; Li M.; Kwok, R. T. K.; Zhao, E. G.; Lam, J. W. Y.; Yu, Y.; Tang, B. Z. Full-range intracellular pH sensing by an aggregation-induced emission-active two-channel ratiometricfluorogen. J. Am. Chem. Soc. 2013, 135, 4926–4929.

    Article  CAS  PubMed  Google Scholar 

  3. Hu, R. R.; Ye, R. Q.; Lam, J. W. Y.; Li, M.; Leung, C. W. T.; Tang, B. Z. Conjugated polyelectrolytes with aggregation-enhanced emission characteristics: synthesis and their biological applications. Chem. Asian J. 2013, 8, 2436–2445.

    Article  CAS  PubMed  Google Scholar 

  4. Liu, L. J.; Liu, W.; Ji, G.; Wu Z.Y.; Xu, B.; Qian J.; Tian, W. J. NIR emission nanoparticles based on FRET composed of AIE luminogens and NIR dyes for two-photon fluorescence imaging. Chinese J. Polym. Sci. 2019, 37, 401–408.

    Article  CAS  Google Scholar 

  5. Zhi, Y. F.; Li, C.; Song, Z. H.; Yang, Z. J.; Ma, H. W.; Gao, L. C. The location-influenced fluorescence of AIEgens in the microphase-separatedstructures. Chinese J. Polym. Sci. 2019, 37, 1060–1064.

    Article  CAS  Google Scholar 

  6. Qin, W.; Li, K.; Feng, G. X.; Li, M.; Yang, Z. Y.; Liu, B.; Tang, B. Z. Bright and photostable organic fluorescent dots with aggregation-induced emission characteristics for noninvasive long-term cell imaging. Adv. Funct. Mater. 2014, 24, 635–643.

    Article  CAS  Google Scholar 

  7. Shi, H. B.; Liu, J. Z.; Geng, J. L.; Tang, B. Z.; Liu, B. Specific detection of integrin αvβ3 by light-up bioprobe with aggregation-induced emission characteristics. J. Am. Chem. Soc. 2012, 134, 9569–9572.

    Article  CAS  PubMed  Google Scholar 

  8. Gao, S. J.; Li, Z.; Sun Z. C.; Wen, J. Y.; Li, F. R.; Du, X. Y.; Liu, Y.; Tian, Y.; Niu, Z. W. Single-wavelength excited ratiometric fluorescence pH probe to image intracellular trafficking of tobacco mosaic virus. Chinese J. Polym. Sci, 2020, 38, 587–592.

    Article  CAS  Google Scholar 

  9. Zhao, J. Y.; Peng, J.; Chen, P.; Wang, H. R.; Xue, P. C.; Lu, R. Mechanofluorochromism of difluoroboron β-ketoiminate boron complexes functionalized with benzoxazole and benzothiazole. Dyes. Pigments 2018, 149, 276–283.

    Article  CAS  Google Scholar 

  10. Gao, H. Z.; Xu, D. F.; Wang, Y. H.; Zhang, C.; Yang, Y.; Liu, X. L.; Han, A. X.; Wang, Y. Aggregation-induced emission and mechanofluorochromism of tetraphenylbutadiene modified β-ketoiminate boron complexes. Dyes. Pigments 2018, 150, 165–173.

    Article  CAS  Google Scholar 

  11. Xue, P. C.; Yao, B. D.; Sun, J. B.; Xu, Q. X.; Chen, P.; Zhang, Z. Q.; Lu, R. Phenothiazine-based benzoxazole derivates exhibiting mechanochromic luminescence: the effect of a bromine atom. J. Mater. Chem. C 2014, 2, 3942–3950.

    Article  CAS  Google Scholar 

  12. Zhan, Y.; Zhao, J. Y.; Peng, Y.; Ye, W. J. Multi-stimuli responsive fluorescent behaviors of a donor-π-acceptor phenothiazine modified benzothiazole derivative. RSC Adv. 2016, 6, 92144–92151.

    Article  CAS  Google Scholar 

  13. Xue, P. C.; Ding, J. P.; Chen, P.; Wang, P. P.; Yao, B. Q.; Sun, J. B.; Lu, R. Mechanical force-induced luminescence enhancement and chromism of a nonplanar D-A phenothiazine derivative. J. Mater. Chem. C 2016, 4, 5275–5280.

    Article  CAS  Google Scholar 

  14. Li, C. L.; Duan, R. H.; Liang, B. Y.; Han, G. C.; Wang, S. P.; Ye, K. Q.; Liu, Y.; Yi, Y. P.; Wang, Y. Deep-red to near-infrared thermally activated delayed fluorescence in organic solid films and electroluminescent devices. Angew. Chem. Int. Ed. 2017, 56, 11525–11529.

    Article  CAS  Google Scholar 

  15. Liu, T. X.; Zhu, L. P.; Zhong, C.; Xie, G. H.; Gong, S. L.; Fang, J. F.; Ma, D. G.; Yang, C. L. Naphthothiadiazole-based near-infrared emitter with a photoluminescence quantum yield of 60% in neat film and external quantum efficiencies of up to 3.9% in nondoped OLEDs. Adv. Funct. Mater. 2017, 27, 1606384.

    Article  CAS  Google Scholar 

  16. Zhou, J.; He, B. R.; Xiang, J. Y.; Chen, B.; Lin, G. W.; Luo, W. W.; Lou, X. D.; Chen, S. M.; Zhao, Z. J.; Tang, B. Z. Tuning the AIE activities and emission wavelengths of tetraphenylethene-containing luminogens. Chem. Select. 2016, 1, 812–818.

    CAS  Google Scholar 

  17. Xiang, J. Y.; Cai, X. L.; Lou, X. D.; Feng, G. X.; Min, X. H.; Luo, W. W.; He, B. R.; Goh, C. C.; Ng, L. G.; Zhou, J.; Zhao, Z. J.; Liu, B.; Tang, B. Z. Biocompatible green and red fluorescent organic dots with remarkably large two-photon action cross sections for targeted cellular imaging and real-time intravital blood vascular visualization. ACS Appl. Mater. Interfaces 2015, 7, 14965–14974.

    Article  CAS  PubMed  Google Scholar 

  18. Li, Z. H.; Qin, W.; Wu, J. L.; Yang, Z. Y.; Chi, Z. G.; Liang, G. D. Bright electrochemiluminescence films of efficient aggregation-induced emissionluminogens for sensitive detection of dopamine. Mater. Chem. Front. 2019, 3, 2051–2057.

    Article  CAS  Google Scholar 

  19. Li, L. L.; Li, Y.; Dang, Y. J.; Chen, T. T.; Zhang, A.; Ding, C. Y.; Xu, Z. Imidazole-fused benzothiadiazole-based red-emissive fluorescence probe for lysosomal pH imaging in living cells. Talanta 2020, 217, 121066.

    Article  CAS  PubMed  Google Scholar 

  20. Dhanunjayarao, K.; Sa, S.; Aradhyula, B. P. R.; Venkatasubbajah, K. Synthesis of phenanthroimidazole-based four coordinate organoboron compounds. Tetrahedron 2018, 74, 5819–5825.

    Article  CAS  Google Scholar 

  21. Jia, J. H.; Cao, K. Y.; Xue, P. C.; Zhang, Y.; Zhou, H. P.; Lu, R. Y-shaped dyes based on triphenylamine for efficient dye-sensitized solar cells. Tetrahedron 2012, 68, 3626–3632.

    Article  CAS  Google Scholar 

  22. Yang, X. C.; Lu, R.; Xue, P. C.; Li, B.; Xu, D. F.; Xu, T. H.; Zhao, Y. Y. Carbazole-based organogel as a scaffold to construct energy transfer arrays with controllable fluorescence emission. Langmuir 2008, 24, 13730–13735.

    Article  CAS  PubMed  Google Scholar 

  23. Hua, Y.; Chang, S.; Huang, D. D.; Zhou, X.; Zhu, X. J.; Zhao, J. Z.; Chen, T.; Wong, W. Y.; Wong, W. K. Significant improvement of dye-sensitized solar cell performance using simple phenothiazine-based dyes. Chem. Mater. 2013, 25, 2146–2153.

    Article  CAS  Google Scholar 

  24. Sachdeva, T.; Milton, M. D. AIEE active novel red-emitting D-π-A phenothiazine chalcones displaying large Stokes shift, solvatochromism and “turn-on” reversible mechanofluorochromism. Dyes. Pigments 2020, 181, 108539.

    Article  CAS  Google Scholar 

  25. Cibotaru, S.; Sandu, A.; Belei, D.; Marin, L. Water soluble PEGylated phenothiazines as valuable building blocks for bio-materials. Mater. Sci. Eng. C 2020, 116, 111216.

    Article  CAS  Google Scholar 

  26. Bai, C. L.; Liu, M. H. From chemistry to nanoscience: not just a matter of size. Angew. Chem. Int. Ed. 2013, 52, 2678–2683.

    Article  CAS  Google Scholar 

  27. Wang, Y.; Xu, J.; Wang, Y. W.; Chen, H. Y. Emerging chirality in nanoscience. Chem. Soc. Rev. 2013, 42, 2930–2962.

    Article  CAS  PubMed  Google Scholar 

  28. Goto, H.; Akagi, K. Optically active conjugated polymers prepared from achiral monomers by polycondensation in a chiral nematic solvent. Angew. Chem. Int. Ed. 2005, 44, 4322–4328.

    Article  CAS  Google Scholar 

  29. Mallakpour, S.; Zadehnazari, A. Advances in synthetic optically active condensation polymers-a review. Express. Polym. Lett. 2011, 5, 142–181.

    Article  CAS  Google Scholar 

  30. Mallakpour, S.; Zeraatpisheh, F.; Sabzalian, M. R. Sonochemical-assisted fabrication of biologically active chiral poly(esterimide)/TiO2 bionanocomposites derived from L-methionine and L-tyrosine amino acids. Express Polym. Lett. 2011, 5, 825–837.

    Article  CAS  Google Scholar 

  31. Skiba, J.; Kowalczyk, A.; Fik, M. A.; Gapinska, M.; Trzybinski, D.; Wozniak, K.; Vrcek, V.; Czerwieniec, R.; Kowalski, K. Luminescent pyrenyl-GNA nucleosides: synthesis, photophysics and confocal microscopy studies in cancer HeLa cells. Photochem. Photobiol. Sci. 2019, 18, 2449–2460.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, M. X.; Qing, G. Y.; Sun, T. L. Chiral biointerface materials. Chem. Soc. Rev. 2012, 41, 1972–1984.

    Article  CAS  PubMed  Google Scholar 

  33. Deng, M. D.; Li, S.; Cai, L. Z.; Gou, X. J. Preparation of a hydroxypropyl-β-cyclodextrin functionalized monolithic column by one-pot sequential reaction and its applicatior for capillary electrochromatographic enantiomer separation. J. Chromatogr. A 2019, 1603, 269–277.

    Article  CAS  PubMed  Google Scholar 

  34. Tan, H. L.; Chen, Q. B.; Chen, T. T.; Liu, H. L. Effects of rigid conjugated groups: toward improving enantioseparation performances of chiral porous organic polymers. ACS Appl. Mater. Interfaces 2019, 11, 37156–37162.

    Article  CAS  PubMed  Google Scholar 

  35. Li, M. M.; Qing, G. Y.; Zhang, M. X.; Sun, T. L. Chiral polymer-based biointerface materials. Sci. China Chem. 2014, 57, 540–551.

    Article  CAS  Google Scholar 

  36. Wrzosek, K.; Harriehausen, I.; Seidel-Morgenstern, A. Combination of enantioselective preparative chromatography and racemization: experimental demonstration and model-based process optimization. Org. Process. Res. Dev. 2018, 22, 1761–1771.

    Article  CAS  Google Scholar 

  37. Zhang, X. Q.; Chi, Z. G.; Xu, B. J.; Chen, C. J.; Zhou, X.; Zhang, Y.; Liu, S. W.; Xu, J. R. End-group effects of piezofluorochromic aggregation-induced enhanced emission compounds containing distyrylanthracene. J. Mater. Chem. A 2012, 22, 18505–18513.

    Article  CAS  Google Scholar 

  38. Tao, L.; Liu, J. Q.; Davis, T. P. Branched polymer-protein conjugates made from mid-chain-functional P(HPMA). Biomacromolecules 2009, 10, 2847–2851.

    Article  CAS  PubMed  Google Scholar 

  39. Huang, Z. F.; Chen, Y. L.; Zhou, C. Y.; Wang, K.; Liu, X. B.; Mao, L. C.; Yuan, J. Y.; Tao, L.; Wei, Y. Amphiphilic AIE-active copolymers with optical activity by chemoenzymatic transesterification and RAFT polymerization: synthesis, self-assembly and biological imaging. Dyes. Pigments 2021, 184, 108829.

    Article  CAS  Google Scholar 

  40. Zhang, X. Y.; Zhang, X. Q.; Yang, B.; Liu, M. Y.; Liu, W. Y.; Chen, Y. W.; Wei, Y. Fabrication of aggregation induced emission dye-basedfluorescent organic nanoparticles via emulsionpolymerization and their cell imaging applications. Polym. Chem. 2014, 5, 399–404.

    Article  CAS  Google Scholar 

  41. Mei, J.; Hong, Y. N.; Lam, J. W. Y.; Qin, A. J.; Tang, Y. H.; Tang, B. Z. Aggregation-induced emission: the whole is more brilliant than the parts. Adv. Mater. 2014, 26, 5429–5479.

    Article  CAS  PubMed  Google Scholar 

  42. Yan, Z. Q.; Yang, Z. Y.; Wang, H.; Li, A. W.; Wang, L. P.; Yang, H.; Gao, B. R. Study of aggregation induced emission of cyano-substituted oligo (p-phenylenevinylene) by femtosecond time resolved fluorescence. Spectrochim. Acta Part A 2011, 78, 1640–1645.

    Article  CAS  Google Scholar 

  43. Qin, W.; Ding, D.; Liu, J. Z.; Yuan, W. Z.; Hu, Y.; Liu, B.; Tang, B. Z. Biocompatible nanoparticles with aggregation-induced emission characteristics as far-red/near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications. Adv. Funct. Mater. 2012, 22, 771–779.

    Article  CAS  Google Scholar 

  44. Hu, R. R.; Lager, E.; Aguilar-Aguilar, A.; Liu, J. Z.; Lam, J. W. Y.; Sung, H. H. Y.; Williams, I. D.; Zhong, Y. C.; Wong, K. S.; Pena-Cabrera, E.; Tang, B. Z. Twisted intramolecular charge transfer and aggregation-induced emission of BODIPY derivatives. J. Phys. Chem. C 2009, 113, 15845–15853.

    Article  CAS  Google Scholar 

  45. Zhang, X. Y.; Hu, W. B.; Li, J.; Tao, L.; Wei, Y. A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. Toxicol. Res. 2012, 1, 62–68.

    Article  CAS  Google Scholar 

  46. Zhao, Y.; Yang, B.; Zhang, Y. L.; Wang, S. Q.; Fu, C. K.; Wei, Y.; Tao, L. Fluorescent PEGylation agent by a thiolactonebased one-pot reaction: a new strategy for theranostic combinations. Polym. Chem. 2014, 5, 6656–6661.

    Article  CAS  Google Scholar 

  47. Huang Z. F.; Wang R. Z.; Chen Y. L.; Liu X. B.; Wang K.; Mao L. C.; Wang K.; Yuan J. Y.; Zhang X. Y.; Tao L.; Wei Y. A polymerizable aggregation-induced emission dye for fluorescent nanoparticles: synthesis, molecular structure and application in cell imaging. Polym. Chem. 2019, 10, 2162–2169.

    Article  CAS  Google Scholar 

  48. Zhang, X. Y.; Wang, S. Q.; Liu, M. Y.; Hui, J. F.; Yang, B.; Tao L.; Wei, Y. Surfactant-dispersed nanodiamond: biocompatibility evaluation and drug delivery applications. Toxicol. Res. 2013, 2, 335–342.

    Article  CAS  Google Scholar 

  49. Zhang, X. Y.; Wang, S. Q.; Fu, C. K.; Feng, L.; Ji, Y.; Tao, L.; Li, S. X.; Wei, Y. PolyPEGylated nanodiamond for intracellular delivery of a chemotherapeutic drug. Polym. Chem. 2012, 3, 2716–2719.

    Article  CAS  Google Scholar 

  50. Yang, B.; Zhang, Y. L.; Zhang, X. Y.; Tao, L.; Li, S. X.; Wei, Y. Facilely prepared inexpensive and biocompatible self-healing hydrogel: a new injectable cell therapy carrier. Polym. Chem. 2012, 3, 3235–3238.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of Guangdong Province (Nos. 2018A030313784 and 2021A1515410008), the Colleges and Universities Projects of Guangdong Province (Nos. 2020KTSCX180, 2020KTSCX184 and 2020ZDZX3027), the National Natural Science Foundation of China (No. 51673107) and the Climbing Plan of Guangdong Province (No. PDJH2021a0616).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zeng-Fang Huang or Yen Wei.

Electronic Supplementary Information

10118_2021_2596_MOESM1_ESM.pdf

Polymerizable AEE-active Dye with Optical Activity for Fluorescent Nanoparticles Based on Phenothiazine: Synthesis, Self-assembly and Biological Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, ZF., Chen, YL., Zhou, CY. et al. Polymerizable AEE-active Dye with Optical Activity for Fluorescent Nanoparticles Based on Phenothiazine: Synthesis, Self-assembly and Biological Imaging. Chin J Polym Sci 39, 1431–1440 (2021). https://doi.org/10.1007/s10118-021-2596-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2596-x

Keywords

Navigation