Skip to main content

Advertisement

Log in

Green Monomer of CO2 and Alkyne-based Four-component Tandem Polymerization toward Regio- and Stereoregular Poly(aminoacrylate)s

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Green monomers, such as carbon dioxide (CO2), are closely related to our daily life and highly desirable to be transferred to functional polymers with diverse structures and versatile properties because they are abundant, cheap, nontoxic, renewable, and sustainable. However, the polymerizations based on these green monomers are to be further developed. In this work, a facile CO2 and alkyne-based one-pot, two-step, four-component tandem polymerization was successfully established. The polymerization of CO2, diynes, alkyl dihalides, and primary/secondary amines can proceed under mild reaction conditions and regio- and stereoregular poly(aminoacrylate)s with good solubility and thermal stability were obtained in high yields (up to 95%). Notably, distinctly different stereoregularity of resultant poly(aminoacrylate)s was realized via using primary or secondary amines. Using the former would readily generate polymers with 100% Z-isomers, whereas the latter furnished products with over 95% E-isomers. Through different monomer combination, the polymers with tunable structures and properties were obtained. Moreover, the tetraphenylethene units containing poly(aminoacrylate)s, showing the unique aggregation-induced emission characteristics, could function as a fluorescent probe for sensitive explosive detection. Thus, this work not only develops a facile CO2 and alkyne-based multicomponent tandem polymerization but also provides a valuable strategy to fine-tune the polymer structures and properties, which could be potentially applied in diverse areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hantzsch, A. Ueber die synthese pyridinartiger verbindungen aus acetessigäther und aldehydammoniak. Justus Liebigs Ann. Chem.1882, 215, 1–82.

    Google Scholar 

  2. Mannich, C.; Krosche, W. Ueber ein kondensationsprodukt aus formaldehyd, ammoniak und antipyrin. Arch. Pharm.1912, 250, 647–667.

    CAS  Google Scholar 

  3. Passerini, M. Isonitriles. II. Compounds with aldehydes or with ketones and monobasic organic acids. Gazz. Chim. Ital1921, 51, 181–189.

    CAS  Google Scholar 

  4. Ugi, I.; Demharter, A.; Hörl, W.; Schmid, T. Ugi reactions with trifunctional α-amino acids, aldehydes, isocyanides and alcohols. Tetrahedron1996, 52, 11657–11664.

    CAS  Google Scholar 

  5. Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed.2000, 39, 3168–3210.

    Google Scholar 

  6. Deng, X. X.; Li, L.; Li, Z. L.; Lv, A.; Du, F. S.; Li, Z. C. Sequence regulated poly(ester-amide)s based on Passerini reaction. ACS Macro Lett.2012, 1, 1300–1303.

    CAS  Google Scholar 

  7. Lee, I. H.; Kim, H.; Choi, T. L. Cu-catalyzed multicomponent polymerization to synthesize a library of poly(N-sulfonylamidines). J. Am. Chem. Soc.2013, 135, 3760–3763.

    CAS  PubMed  Google Scholar 

  8. Kreye, O.; Tóth, T.; Meier, M. A. Introducing multicomponent reactions to polymer science: Passerini reactions of renewable monomers. J. Am. Chem. Soc.2011, 133, 1790–1792.

    CAS  PubMed  Google Scholar 

  9. Zhang, Z.; You, Y. Z.; Wu, D. C.; Hong, C. Y. Syntheses of sequence-controlled polymers via consecutive multicomponent reactions. Macromolecules2015, 48, 3414–3421.

    CAS  Google Scholar 

  10. Hu, R.; Li, W.; Tang, B. Z. Recent advances in alkyne-based multicomponent polymerizations. Macromol. Chem. Phys.2016, 217, 213–224.

    CAS  Google Scholar 

  11. Sehlinger, A.; Dannecker, P. K.; Kreye, O.; Meier, M. A. Diversely substituted polyamides: macromolecular design using the Ugi four-component reaction. Macromolecules2014, 47, 2774–2783.

    CAS  Google Scholar 

  12. Xue, H.; Zhao, Y.; Wu, H.; Wang, Z.; Yang, B.; Wei, Y.; Wang, Z.; Tao, L. Multicomponent combinatorial polymerization via the Biginelli reaction. J. Am. Chem. Soc.2016, 138, 8690–8693.

    CAS  PubMed  Google Scholar 

  13. Lv, A.; Deng, X. X.; Li, L.; Li, Z. L.; Wang, Y. Z.; Du, F. S.; Li, Z. C. Facile synthesis of multi-block copolymers containing poly(ester-amide) segments with an ordered side group sequence. Polym. Chem.2013, 4, 3659–3662.

    CAS  Google Scholar 

  14. Wang, Y. Z.; Deng, X. X.; Li, L.; Li, Z. L.; Du, F. S.; Li, Z. C. One-pot synthesis of polyamides with various functional side groups via Passerini reaction. Polym. Chem.2013, 4, 444–448.

    CAS  Google Scholar 

  15. Tuten, B. T.; De Keer, L.; Wiedbrauk, S.; Van Steenberge, P. H.; D’hooge, D. R.; Barner-Kowollik, C. Visible-light-induced Passerini multicomponent polymerization. Angew. Chem. Int. Ed.2019, 58, 5672–5676.

    CAS  Google Scholar 

  16. Rotstein, B. H.; Zaretsky, S.; Rai, V.; Yudin, A. K. Small heterocycles in multicomponent reactions. Chem. Rev.2014, 114, 8323–8359.

    CAS  PubMed  Google Scholar 

  17. Estévez, V.; Villacampa, M.; Menéndez, J. C. Recent advances in the synthesis of pyrroles by multicomponent reactions. Chem. Soc. Rev.2014, 43, 4633–4657.

    PubMed  Google Scholar 

  18. Li, W.; Wu, X.; Zhao, Z.; Qin, A.; Hu, R.; Tang, B. Z. Catalyst-free, atom-economic, multicomponent polymerizations of aromatic diynes, elemental sulfur, and aliphatic diamines toward luminescent polythioamides. Macromolecules2015, 48, 7747–7754.

    CAS  Google Scholar 

  19. Tian, T.; Hu, R.; Tang, B. Z. Room temperature one-step conversion from elemental sulfur to functional polythioureas through catalyst-free multicomponent polymerizations. J. Am. Chem. Soc.2018, 140, 6156–6163.

    CAS  PubMed  Google Scholar 

  20. Cao, W.; Dai, F.; Hu, R.; Tang, B. Z. Economic sulfur conversion to functional polythioamides through catalyst-free multicomponent polymerizations of sulfur, acids, and amines. J. Am. Chem. Soc.2020, 142, 978–986.

    CAS  PubMed  Google Scholar 

  21. Zhang, J.; Wang, W.; Liu, Y.; Sun, J. Z.; Qin, A.; Tang, B. Z. Facile polymerization of water and triple-bond based monomers toward functional polyamides. Macromolecules2017, 50, 8554–8561.

    CAS  Google Scholar 

  22. Zhang, J.; Shi, W.; Liu, Q.; Chen, T.; Zhou, X.; Yang, C.; Zhang, K..; Xie, Z. Atom-economical, room-temperature, and high-efficiency synthesis of polyamides via a three-component polymerization involving benzoxazines, odorless isocyanides, and water. Polym. Chem.2018, 9, 5566–5571.

    CAS  Google Scholar 

  23. Song, B.; Hu, K.; Qin, A.; Tang, B. Z. Oxygen as a crucial comonomer in alkyne-based polymerization toward functional poly(tetrasubstituted furan)s. Macromclecules2018, 51, 7013–7018.

    CAS  Google Scholar 

  24. Chen, Z.; Hadjichristidis, N.; Feng, X.; Gnanou, Y. Poly(urethane-carbonate)s from carbon dioxide. Macromolecules2017, 50, 2320–2328.

    CAS  Google Scholar 

  25. Song, B.; He, B.; Qin, A.; Tang, B. Z. Direct polymerization of carbon dioxide, diynes, and alkyl dihalides under mild reaction conditions. Macromolecules2018, 51, 42–48.

    CAS  Google Scholar 

  26. Fu, W.; Dong, L.; Shi, J.; Tong, B.; Cai, Z.; Zhi, J.; Dong, Y. Multicomponent spiropolymerization of diisocyanides, alkynes and carbon dioxide for constructing 1,6-dioxospiro[4,4]nonane-3,8-diene as structural units under one-pot catalyst-free conditions. Polym. Chem.2018, 9, 5543–5550.

    CAS  Google Scholar 

  27. Song, B.; Bai, T.; Xu, X.; Chen, X.; Liu, D.; Guo, J.; Qin, A.; Ling, J.; Tang, B. Z. Multifunctional linear and hyperbranched five-membered cyclic carbonate-based polymers directly generated from CO2 and alkyne-based three-component polymerization. Macromolecules2019, 52, 5546–5554.

    CAS  Google Scholar 

  28. Song, B.; Qin, A.; Tang, B. Z. New polymerizations based on green monomer of carbon dioxide. Acta Chim. Sinica2020, 78, 9–22.

    Google Scholar 

  29. Urselmann, D.; Antovic, D.; Müller, T. J. Pseudo five-component synthesis of 2,5-di(hetero)arylthiophenes via a one-pot Sonogashira-Glaser cyclization sequence. Beilstein J. Org. Chem.2011, 7, 1499–1503.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hong, B. C.; Dange, N. S.; Hsu, C. S.; Liao, J. H. Sequential organocatalytic stetter and michael-aldol condensation reaction: asymmetric synthesis of fully substituted cyclopentenes via a [1+2+2] annulation strategy. Org. Lett.2010, 12, 4812–4815.

    CAS  PubMed  Google Scholar 

  31. McCarroll, A. J.; Walton, J. C. Programming organic molecules: design and management of organic syntheses through free-radical cascade processes. Angew. Chem. Int. Ed.2001, 40, 2225–2248.

    Google Scholar 

  32. Kakuchi, R.; Theato, P. Efficient multicomponent postpolymerization modification based on kabachnik-fields reaction. ACS Macro Lett.2014, 3, 329–332.

    CAS  Google Scholar 

  33. He, B.; Su, H.; Bai, T.; Wu, Y.; Li, S.; Gao, M.; Hu, R.; Zhao, Z.; Qin, A.; Ling, J.; Tang, B. Z. Spontaneous amino-yne click polymerization: a powerful tool toward regio-and stereospecific poly(β-aminoacrylate)s. J. Am. Chem. Soc.2017, 139, 5437–5443.

    CAS  PubMed  Google Scholar 

  34. Deng, H.; Hu, R.; Leung, A. C.; Zhao, E.; Lam, J. W.; Tang, B. Z. Construction of regio-and stereoregular poly(enaminone)s by multicomponent tandem polymerizations of diynes, diaroyl chloride and primary amines. Polym. Chem.2015, 6, 4436–4446.

    CAS  Google Scholar 

  35. Chen, X.; Bai, T.; Hu, R.; Song, B.; Lu, L.; Ling, J.; Qin, A.; Tang, B. Z. Aroylacetylene-based amino-yne click polymerization toward nitrogen-containing polymers. Macromolecules2020, 53, 2516–2525.

    CAS  Google Scholar 

  36. Deng, H.; He, Z.; Lam, J. W.; Tang, B. Z. Regio- and stereoselective construction of stimuli-responsive macromolecules by a sequential coupling-hydroamination polymerization route. Polym. Chem.2015, 6, 8297–8305.

    CAS  Google Scholar 

  37. Qiu, Z.; Hao, B.; Gu, X.; Wang, Z.; Xie, N.; Lam, J. W.; Hao, H.; Tang, B. Z. A general powder dusting method for latent fingerprint development based on AIEgens. Sci. China Chem.2018, 61, 966–970.

    CAS  Google Scholar 

  38. Yang, J.; Chi, Z.; Zhu, W.; Tang, B. Z.; Li, Z. Aggregation-induced emission: a coming-of-age ceremony at the age of eighteen. Sci. China Chem.2019, 62, 1090–1098.

    CAS  Google Scholar 

  39. De Nisi, F.; Francischello, R.; Battisti, A.; Panniello, A.; Fanizza, E.; Striccoli, M.; Gu, X.; Leung, N. L. C.; Tang, B. Z.; Pucci, A. Red-emitting AIEgen for luminescent solar concentrators. Mater. Chem. Front.2017, 1, 1406–1412.

    CAS  Google Scholar 

  40. Feng, G.; Liu, B. Aggregation-induced emission (AIE) dots: emerging theranostic nanolights. Acc. Chem. Res.2018, 51, 1404–1414.

    CAS  PubMed  Google Scholar 

  41. Yang, J.; Zhen, X.; Wang, B.; Gao, X.; Ren, Z.; Wang, J.; Xie, Y.; Li, J.; Peng, Q.; Pu, K.; Li, Z. The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nat. Commun.2018, 9, 840.

    PubMed  PubMed Central  Google Scholar 

  42. Salinas, Y.; Martínez-Máñez, R.; Marcos, M. D.; Sancenón, F.; Costero, A. M.; Parra, M.; Gil, S. Optical chemosensors and reagents to detect explosives. Chem. Soc. Rev.2012, 41, 1261–1296.

    CAS  PubMed  Google Scholar 

  43. Wu, Y.; Qin, A.; Tang, B. Z. AIE-active polymers for explosive detection. Chinese J. Polym. Sci.2017, 35, 141–154.

    CAS  Google Scholar 

  44. Ma, H.; He, C.; Li, X.; Ablikim, O.; Zhang, S.; Zhang, M. A fluorescent probe for TNP detection in aqueous solution based on joint properties of intramolecular charge transfer and aggregation-induced enhanced emission. Sensor Actuat. B-Chem.2016, 230, 746–752.

    CAS  Google Scholar 

  45. Ma, Y.; Li, H.; Peng, S.; Wang, L. Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection. Anal. Chem.2012, 84, 8415–8421.

    CAS  PubMed  Google Scholar 

  46. Pinrat, O.; Boonkitpatarakul, K.; Paisuwan, W.; Sukwattanasinitt, M.; Ajavakom, A. Glucopyranosyl-1,4-dihydropyridine as a new fluorescent chemosensor for selective detection of 2,4,6-trinitrophenol. Analyst2015, 140, 1886–1893.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21788102, 21525417, and 21490571), the Natural Science Foundation of Guangdong Province (Nos. 2016A030312002 and 2019B030301003), and the Innovation and Technology Commission of Hong Kong (ITC-CNERC14S01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to An-Jun Qin or Ben Zhong Tang.

Electronic Supplementary Information

10118_2020_2454_MOESM1_ESM.pdf

Green Monomer of CO2 and Alkyne-based Four-component Tandem Polymerization toward Regio- and Stereoregular Poly(aminoacrylate)s

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, B., Qin, AJ. & Tang, B.Z. Green Monomer of CO2 and Alkyne-based Four-component Tandem Polymerization toward Regio- and Stereoregular Poly(aminoacrylate)s. Chin J Polym Sci 39, 51–59 (2021). https://doi.org/10.1007/s10118-020-2454-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2454-2

Keywords

Navigation