Skip to main content
Log in

Supramolecular Polymer Emulsifiers for One-step Complex Emulsions

  • Feature Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Complex emulsions, such as double emulsions and high-internal-phase emulsions, have shown great applications in the fields of drug delivery, sensing, catalysis, oil-water separation and self-healing materials. Their controllable preparation is at the forefront of interface and material science. Surfactants and polymers have been widely used as emulsifiers for building complex emulsions. Yet some inherent disadvantages exist including multi-step emulsifications and low production efficiency. Alternatively, supramolecular polymer emulsifier for complex emulsions via one-step emulsification is rising as a new strategy due to the ease of preparation. In this feature article, we review our recent progresses in using supramolecular polymer emulsifiers for the preparation of complex emulsions. Double emulsions and high-internal-phase emulsions are successfully prepared via one-step emulsification with the help of different supramolecular interactions including electrostatic, hydrogen bond, coordination interaction and dynamic covalent bond, which will be particularly emphasized in detail. In the end, a comprehensive prospect is given for the future development of this field. This article is expected to provide new inspirations for preparing complex emulsions via supramolecular routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang, J.; Quinlan, P. J.; Tam, K. C. Stimuli-responsive pickering emulsions: recent advances and potential applications. Soft Matter 2015, 11(18), 3512–3529

    Article  CAS  PubMed  Google Scholar 

  2. Gupta, A.; Eral, H. B.; Hatton, T. A.; Doyle, P. S. Nanoemulsions: formation, properties and applications. Soft Matter 2016, 12(11), 2826–2841

    Article  CAS  PubMed  Google Scholar 

  3. Khan, A. Y.; Talegaonkar, S.; Iqbal, Z.; Ahmed, F. J.; Khar, R. K. Multiple emulsions: an overview. Curr. Drug Deliv. 2006, 3(4), 429–43

    Article  CAS  PubMed  Google Scholar 

  4. Dickinson, E. Stabilising emulsion-based colloidal structures with mixed food ingredients. J. Sci. Food Agr. 2013, 93(4), 710–721

    Article  CAS  Google Scholar 

  5. McClements, D. J. Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 2011, 7(6), 2297–2316

    Article  CAS  Google Scholar 

  6. Shi, Y.; Yu, Q.; Sun, C.; Dong, F.; Yang, G.; Feng, J. Progress in research work field with respect to physical stability of emulsion oil in water for pesticides. China Surfactant Detergent and Cosmetics 2016, 46(3), 173–177

    Google Scholar 

  7. Feng, J.; Xiang, S.; Qian, K.; Zhu, F.; Yu, Q.; Wu, X. Characterization methods for emulsion stability and their applications in the research and development for pesticide emulsions oil in water. J. Pestic. Sci. 2015, 17(1), 15–26

    CAS  Google Scholar 

  8. He, L.; Lin, F.; Li, X.; Sui, H.; Xu, Z. Interfacial sciences in unconventional petroleum production: from fundamentals to applications. Chem. Soc. Rev. 2015, 44(15), 5446–5494

    Article  CAS  PubMed  Google Scholar 

  9. Yang, H.; Fu, L.; Wei, L.; Liang, J.; Binks, B. P. Compartmentalization of incompatible reagents within Pickering emulsion droplets for one-pot cascade reactions. J. Am. Chem. Soc. 2015, 137(3), 1362–1371

    Article  CAS  PubMed  Google Scholar 

  10. Yang, H.; Zhou, T.; Zhang, W. A strategy for separating and recycling solid catalysts based on the pH-triggered Pickering-emulsion inversion. Angew. Chem. Int. Ed. 2013, 52(29), 7455–7459

    Article  CAS  Google Scholar 

  11. Liang, F. X.; Yang, Z. Z. Progress in Janus composites toward interfacial engineering. Acta Polymerica Sinica (in Chinese) 2017, (6), 883–892

    Google Scholar 

  12. Cao, Z. Q.; Wang, G. J.; Chen, Y.; Lang, F. X.; Yang, Z. Z. Light-triggered responsive Janus composite nanosheets. Macromolecules 2015, 48(19), 7256–7261

    Article  CAS  Google Scholar 

  13. Zhao, Z. G.; Liang, F. X.; Zhang, G. L.; Ji, X. Y.; Wang, Q.; Qu, X. Z.; Song, X. M.; Yang, Z. Z. Dually responsive Janus composite nanosheets. Macromolecules 2015, 48(11), 3598–3603

    Article  CAS  Google Scholar 

  14. Xu, J. P.; Li, J.; Yang, Y.; Wang, K.; Xu, N.; Li, J. Y.; Liang, R. J.; Shen, L.; Xie, X. L.; Tao, J.; Zhu, J. T. Block copolymer capsules with structure-dependent release behavior. Angew. Chem. Int. Ed. 2016, 55(47), 14633–14637

    Article  CAS  Google Scholar 

  15. Hussain, M.; Xie, J.; Hou, Z. Y.; Shezad, K.; Xu, J. P.; Wang, K.; Gao, Y. J.; Shen, L.; Zhu, J. T. Regulation of drug release by tuning surface textures of biodegradable polymer microparticles. ACS Appl. Mater. Interfaces 2017, 9(16), 14391–14400

    Article  CAS  PubMed  Google Scholar 

  16. Wang, Z.; Cao, Y. Y.; Zhang, X. Y.; Wang, D. G.; Liu, M.; Xie, Z. G.; Wang, Y. P. Rapid self-assembly of block copolymers for flower-like particles with high throughput. Langmuir 2016, 32(50), 13517–13524

    Article  CAS  PubMed  Google Scholar 

  17. Xia, J. H.; Ji, S. B.; Xu, H. P. Diselenide covalent chemistry at the interface: stabilizing an asymmetric diselenide-containing polymer via micelle formation. Polym. Chem. 2016, 7(44), 6708–6713

    Article  CAS  Google Scholar 

  18. Wang, W. C.; Pan, Y. X.; Shi, K.; Peng, C.; Jia, X. L. Hierarchical porous polymer beads prepared by polymerizationinduced phase separation and emulsion-template in a microfluidic device. Chinese J. Polym. Sci. 2014, 32(12), 1646–1654

    Article  CAS  Google Scholar 

  19. Liang, J.; Zhang, G.; Wang, G.; Li, B.; Wu, L. Construction of ordered porous polymer film and functionality of pore structure via microemulsion template method. Chinese Sci. Bull. 2017, 62(6), 563–575

    Article  Google Scholar 

  20. Yang, X. Y.; Chen, L. H.; Li, Y.; Rooke, J. C.; Sanchez, C.; Su, B. L. Hierarchically porous materials: synthesis strategies and structure design. Chem. Soc. Rev. 2017, 46(2), 481–558

    Article  CAS  PubMed  Google Scholar 

  21. Liu, L.; Jiang, L.; Xie, X.; Yang, S. Amphiphilic carbonaceous microsphere-stabilized oil-in-water Pickering emulsions and their applications in enzyme catalysis. ChemPlusChem 2016, 81(7), 629–636

    Article  CAS  Google Scholar 

  22. Chen, Z.; Zhao, C.; Ju, E.; Ji, H.; Ren, J.; Binks, B. P.; Qu, X. Design of surface-active artificial enzyme particles to stabilize Pickering emulsions for high-performance biphasic biocatalysis. Adv. Mater. 2016, 28(8), 1682–1688

    Article  CAS  PubMed  Google Scholar 

  23. Gao, H.; Pan, J.; Han, D.; Zhang, Y.; Shi, W.; Zeng, J.; Peng, Y.; Yan, Y. Facile synthesis of microcellular foam catalysts with adjustable hierarchical porous structure, acid-base strength and wettability for biomass energy conversion. J. Mater. Chem. A 2015, 3(25), 13507–13518

    Article  CAS  Google Scholar 

  24. Gu, X.; Ning, Y.; Yang, Y.; Wang, C. One-step synthesis of porous graphene-based hydrogels containing oil droplets for drug delivery. RSC Adv. 2014, 4(7), 3211–3218

    Article  CAS  Google Scholar 

  25. Pulko, I.; Krajnc, P. High internal phase emulsion templating—a path to hierarchically porous functional polymers. Macromol. Rapid. Comm. 2012, 33(20), 1731–1746

    Article  CAS  Google Scholar 

  26. Brun, N.; Ungureanu, S.; Deleuze, H.; Backov, R. Hybrid foams, colloids and beyond: from design to applications. Chem. Soc. Rev. 2011, 40(2), 771–788

    Article  CAS  PubMed  Google Scholar 

  27. Pulko, I.; Wall, J.; Krajnc, P.; Cameron, N. R. Ultra-high surface area functional porous polymers by emulsion templating and hypercrosslinking: efficient nucleophilic catalyst supports. Chem. Eur. J. 2010, 16(8), 2350–2354

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, N.; Zhong, S.; Chen, T.; Zhou, Y.; Jiang, W. Emulsion-derived hierarchically porous polystyrene solid foam for oil removal from aqueous environment. RSC Adv. 2017, 7(37), 22946–22953

    Article  CAS  Google Scholar 

  29. Na, X. M.; Gao, F.; Zhang, L. Y.; Su, Z. G.; Ma, G. H. Biodegradable microcapsules prepared by self-healing of porous microspheres. ACS Macro Lett. 2012, 1(6), 697–700

    Article  CAS  Google Scholar 

  30. Wang, D. G.; Xiao, L. F.; Zhang, X. Y.; Zhang, K.; Wang, Y. P. Emulsion templating cyclic polymers as microscopic particles with tunable porous morphology. Langmuir 2016, 32(6), 1460–1467

    Article  CAS  PubMed  Google Scholar 

  31. Feng, S. B.; Fu, D. H.; Nie, L.; Zou, P.; Suo, J. P. A detailed view of PLGA-mPEG microsphere formation by double emulsion solvent evaporation method. Chinese J. Polym. Sci. 2015, 33(7), 955–963

    Article  CAS  Google Scholar 

  32. Wang, Q. G.; Liang, F. X.; Wang, Q.; Qu, X. Z.; Yang, Z. Z. Responsive composite Janus cages. Chinese J. Polym. Sci. 2015, 33(10), 1462–1469

    Article  CAS  Google Scholar 

  33. Zhang, T.; Xu, Z.; Gui, H.; Guo, Q. Emulsion-templated, macroporous hydrogels for enhancing water efficiency in fighting fires. J. Mater. Chem. A 2017, 5(21), 10161–10164

    Article  CAS  Google Scholar 

  34. Brown, P.; Butts, C. P.; Eastoe, J. Stimuli-responsive surfactants. Soft Matter 2013, 9(8), 2365–2374

    Article  CAS  Google Scholar 

  35. Liu, Y.; Jessop, P. G.; Cunningham, M.; Eckert, C. A.; Liotta, C. L. Switchable surfactants. Science 2006, 313(5789), 958–960

    Article  CAS  PubMed  Google Scholar 

  36. Huang, X. P.; Qian, Q. P.; Wang, Y. P. Anisotropic particles from a one-pot double emulsion induced by partial wetting and their triggered release. Small 2014, 10(7), 1412–1420

    Article  CAS  PubMed  Google Scholar 

  37. Macon, A. L. B.; Rehman, S. U.; Bell, R. V.; Weaver, J. V. M. Reversible assembly of pH responsive branched copolymer-stabilised emulsion via electrostatic forces. Chem. Commun. 2016, 52(1), 136–139

    Article  CAS  Google Scholar 

  38. Hanson, J. A.; Chang, C. B.; Graves, S. M.; Li, Z.; Mason, T. G.; Deming, T. J. Nanoscale double emulsions stabilized by single-component block copolypeptides. Nature 2008, 455(7209), 85–88

    Article  CAS  PubMed  Google Scholar 

  39. Hong, L.; Sun, G.; Cai, J.; Ngai, T. One-step formation of W/O/W multiple emulsions stabilized by single amphiphilic block copolymers. Langmuir 2012, 28(5), 2332–2336

    Article  CAS  PubMed  Google Scholar 

  40. Chen, Q.; Shi, T.; Han, F.; Li, Z.; Lin, C.; Zhao, P. Porous polystyrene monoliths and microparticles prepared from core cross-linked star (CCS) polymers-stabilized emulsions. Sci. Rep. 2017, 7, 8493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Brusotti, G.; Calleri, E.; Milanese, C.; Catenacci, L.; Marrubini, G.; Sorrenti, M.; Girella, A.; Massolini, G.; Tripodo, G. Rational design of functionalized polyacrylate-based high internal phase emulsion materials for analytical and biomedical uses. Polym. Chem. 2016, 7(48), 7436–7445

    Article  CAS  Google Scholar 

  42. Woodward, R. T.; Slater, R. A.; Higgins, S.; Rannard, S. P.; Cooper, A. I.; Royles, B. J. L.; Findlay, P. H.; Weaver, J. V. M. Controlling responsive emulsion properties via polymer design. Chem. Commun. 2009, (24), 3554–3556

    Article  CAS  Google Scholar 

  43. Verdonck, B.; Goethals, E. J.; Du Prez, F. E. Block copolymers of methyl vinyl ether and isobutyl vinyl ether with thermo-adjustable amphiphilic properties. Macromol. Chem. Phys. 2003, 204(17), 2090–2098

    Article  CAS  Google Scholar 

  44. Sun, G. Q.; Liu, M.; Zhou, X.; Hong, L. Z.; Ngai, T. Influence of asymmetric ratio of amphiphilic diblock copolymers on one-step formation and stability of multiple emulsions. Colloid. Surface. A 2014, 454, 16–22

    Article  CAS  Google Scholar 

  45. Raduan, N. H.; Horozov, T. S.; Georgiou, T. K. "Comb-like" non-ionic polymeric macrosurfactants. Soft Matter 2010, 6(10), 2321–2329

    Article  CAS  Google Scholar 

  46. Perrin, P.; Monfreux, N.; Lafuma, F. Highly hydrophobically modified polyelectrolytes stabilizing macroemulsions: relationship between copolymer structure and emulsion type. Colloid. Polym. Sci. 1999, 277(1), 89–94

    Article  CAS  Google Scholar 

  47. Cho, H. K.; Cho, K. S.; Cho, J. H.; Choi, S. W.; Kim, J. H.; Cheong, I. W. Synthesis and characterization of PEO-PCL-PEO triblock copolymers: effects of the PCL chain length on the physical property of W-1/O/W-2 multiple emulsions. Colloid. Surface B 2008, 65(1), 61–68

    Article  CAS  Google Scholar 

  48. Garti, N.; Bisperink, C. Double emulsions: progress and applications. Curr. Opin. Colloid In. 1998, 3(6), 657–667

    Article  CAS  Google Scholar 

  49. Liang, F.; Shen, K.; Qu, X.; Zhang, C.; Wang, Q.; Li, J.; Liu, J.; Yang, Z. Inorganic Janus nanosheets. Angew. Chem. Int. Ed. 2011, 50(10), 2379–2382

    Article  CAS  Google Scholar 

  50. Datta, S. S.; Abbaspourrad, A.; Amstad, E.; Fan, J.; Kim, S. H.; Romanowsky, M.; Shum, H. C.; Sun, B.; Utada, A. S.; Windbergs, M.; Zhou, S.; Weitz, D. A. 25th anniversary article: double emulsion templated solid microcapsules: mechanics and controlled release. Adv. Mater. 2014, 26(14), 2205–18

    Article  CAS  PubMed  Google Scholar 

  51. Silva, B. F. B.; Rodríguez-Abreu, C.; Vilanova, N. Recent advances in multiple emulsions and their application as templates. Curr. Opin. Colloid In. 2016, 25, 98–108

    Article  CAS  Google Scholar 

  52. Wang, S. Y.; Shi, X. D.; Gan, Z. H.; Wang, F. Preparation of PLGA microspheres with different porous morphologies. Chinese J. Polym. Sci. 2015, 33(1), 128–136

    Article  CAS  Google Scholar 

  53. Wang, W. C.; Peng, C.; Shi, K.; Pan, Y. X.; Zhang, H. S.; Ji, X. L. Double emulsion droplets as microreactors for synthesis of magnetic macroporous polymer beads. Chinese J. Polym. Sci. 2014, 32(12), 1639–1645

    Article  CAS  Google Scholar 

  54. Wang, W. C.; Shi, K.; Pan, Y. X.; Peng, C.; Zhao, Z. L.; Liu, W.; Liu, Y. G.; Ji, X. L. Fabrication of polymersomes with controllable morphologies through dewetting W/O/W double emulsion droplets. Chinese J. Polym. Sci. 2016, 34(4), 475–482

    Article  CAS  Google Scholar 

  55. Mashaghi, S.; Abbaspourrad, A.; Weitz, D. A.; van Oijen, A. M. Droplet microfluidics: a tool for biology, chemistry and nanotechnology. Trac-trend. Anal. Chem. 2016, 82, 118–125

    Article  CAS  Google Scholar 

  56. Eggersdorfer, M. L.; Zheng, W.; Nawar, S.; Mercandetti, C.; Ofner, A.; Leibacher, I.; Koehler, S.; Weitz, D. A. Tandem emulsification for high-throughput production of double emulsions. Lab Chip 2017, 17(5), 936–942

    Article  CAS  PubMed  Google Scholar 

  57. Wang, W.; Zhang, M. J.; Chu, L. Y. Functional polymeric microparticles engineered from controllable microfluidic emulsions. Acc. Chem. Res. 2014, 47(2), 373–384

    Article  CAS  PubMed  Google Scholar 

  58. Ma, G. H.; Sone, H.; Omi, S. Preparation of uniform-sized polystyrene-polyacrylamide composite microspheres from a W/O/W emulsion by membrane emulsification technique and subsequent suspension polymerization. Macromolecules 2004, 37(8), 2954–2964

    Article  CAS  Google Scholar 

  59. Clegg, P. S.; Tavacoli, J. W.; Wilde, P. J. One-step production of multiple emulsions: microfluidic, polymer-stabilized and particle-stabilized approaches. Soft Matter 2016, 12(4), 998–1008

    Article  CAS  PubMed  Google Scholar 

  60. Ficheux, M. F.; Bonakdar, L.; Leal-Calderon, F.; Bibette, J. Some stability criteria for double emulsions. Langmuir 1998, 14(10), 2702–2706

    Article  CAS  Google Scholar 

  61. Morais, J. M.; Santos, O. D. H.; Friberg, S. E. Some fundamentals of the one-step formation of double emulsions. J. Disper. Sci. Technol. 2010, 31(8), 1019–1026

    Article  CAS  Google Scholar 

  62. Morais, J. M.; Santos, O. D. H.; Nunes, J. R. L.; Zanatta, C. F.; Rocha-Filho, P. A. W/O/W multiple emulsions obtained by one-step emulsification method and evaluation of the involved variables. J. Disper. Sci. Technol. 2008, 29(1), 63–69

    Article  CAS  Google Scholar 

  63. Morais, J. M.; Rocha-Filho, P. A.; Burgess, D. J. Influence of phase inversion on the formation and stability of one-step multiple emulsions. Langmuir 2009, 25(14), 7954–7961

    Article  CAS  PubMed  Google Scholar 

  64. Binks, B. P.; Murakami, R.; Armes, S. P.; Fujii, S. Temperature-induced inversion of nanoparticle-stabilized emulsions. Angew. Chem. Int. Ed. 2005, 44(30), 4795–4798

    Article  CAS  Google Scholar 

  65. Besnard, L.; Marchal, F.; Paredes, J. F.; Daillant, J.; Pantoustier, N.; Perrin, P.; Guenoun, P. Multiple emulsions controlled by stimuli-responsive polymers. Adv. Mater. 2013, 25(20), 2844–2848

    Article  CAS  PubMed  Google Scholar 

  66. Protat, M.; Bodin, N.; Gobeaux, F.; Malloggi, F.; Daillant, J.; Pantoustier, N.; Guenoun, P.; Perrin, P. Biocompatible stimuli-responsive W/O/W multiple emulsions prepared by one-step mixing with a single diblock copolymer emulsifier. Langmuir 2016, 32(42), 10912–10919

    Article  CAS  Google Scholar 

  67. Manova, A.; Viktorova, J.; Köhler, J.; Theiler, S.; Keul, H.; Piryazev, A. A.; Ivanov, D. A.; Tsarkova, L.; Möller, M. Multilamellar thermoresponsive emulsions stabilized with biocompatible semicrystalline block copolymers. ACS Macro Lett. 2016, 5(2), 163–167

    Article  CAS  Google Scholar 

  68. Chen, Q.; Xu, Y.; Cao, X.; Qin, L.; An, Z. Core cross-linked star (CCS) polymers with temperature and salt dual responsiveness: synthesis, formation of high internal phase emulsions (HIPEs) and triggered demulsification. Polym. Chem. 2014, 5(1), 175–185

    Article  CAS  Google Scholar 

  69. Chen, Q.; Hill, M. R.; Brooks, W. L. A.; Zhu, A.; Sumerlin, B. S.; An, Z. Boronic acid linear homopolymers as effective emulsifiers and gelators. ACS Appl. Mater. Interfaces 2015, 7(39), 21668–21672

    Article  CAS  PubMed  Google Scholar 

  70. Liu, F.; Lin, S. D.; Zhang, Z. Q.; Hu, J. W.; Liu, G. J.; Tu, Y. Y.; Yang, Y.; Zou, H. L.; Mo, Y. M.; Miao, L. pH-Responsive nanoemulsions for controlled drug release. Biomacromolecules 2014, 15(3), 968–977

    Article  CAS  PubMed  Google Scholar 

  71. Wang, D. G.; Liao, S. L.; Zhang, S. M.; Wang, Y. P. A reversed photosynthesis-like process for light-triggered CO2 capture, release, and conversion. ChemSusChem 2017, 10(12), 2573–2577

    Article  CAS  PubMed  Google Scholar 

  72. Wang, J.; Zhao, J.; Li, Y. B.; Yang, M.; Chang, Y. Q.; Zhang, J. P.; Sun, Z. W.; Wang, Y. P. Enhanced light absorption in porous particles for ultra-NIR-sensitive biomaterials. ACS Macro Lett. 2015, 4(4), 392–397

    Article  CAS  Google Scholar 

  73. Cao, Y. Y.; Wang, Z.; Liao, S. L.; Wang, J.; Wang, Y. P. A light-activated microheater for the remote control of enzymatic catalysis. Chem. Eur. J. 2016, 22(3), 1152–1158

    Article  CAS  PubMed  Google Scholar 

  74. Qian, Q. P.; Huang, X. P.; Zhang, X. Y.; Xie, Z. G.; Wang, Y. P. One-step preparation of macroporous polymer particles with multiple interconnected chambers: a candidate for trapping biomacromolecules. Angew. Chem. Int. Ed. 2013, 52(40), 10625–10629

    Article  CAS  Google Scholar 

  75. Huang, X. P.; Fang, R. C.; Wang, D. G.; Wang, J.; Xu, H. P.; Wang, Y. P.; Zhang, X. Tuning polymeric amphiphilicity via Se ― N interactions: towards one-step double emulsion for highly selective enzyme mimics. Small 2015, 11(13), 1537–1541

    Article  CAS  PubMed  Google Scholar 

  76. Wang, D. G.; Huang, X. P.; Wang, Y. P. Managing the phase separation in double emulsion by tuning amphiphilicity via a supramolecular route. Langmuir 2014, 30(48), 14460–14468

    Article  CAS  PubMed  Google Scholar 

  77. Wang, Z.; Song, J.; Zhang, S.; Xu, X. Q.; Wang, Y. P. Formulating polyethylene glycol as supramolecular emulsifiers for one-step double emulsions. Langmuir 2017, 33(36), 9160–9169

    Article  CAS  PubMed  Google Scholar 

  78. Cameron, N. R.; Sherrington, D. C. High internal phase emulsions (HIPEs)-structure, properties and use in polymer preparation. Adv. Polym. Sci. 1996, 126, 163–214

    Article  CAS  Google Scholar 

  79. Silverstein, M. S.; Cameron, N. R., “PolyHIPEs-porous polymers from high internal phase emulsions. In Encyclopedia of polymer science and technology”, John Wiley & Sons, Inc.: 2010

    Google Scholar 

  80. Silverstein, M. S. PolyHIPEs: recent advances in emulsiontemplated porous polymers. Prog. Polym. Sci. 2014, 39(1), 199–234

    Article  CAS  Google Scholar 

  81. Williams, J. M. High internal phase water-in-oil emulsionsinfluence of surfactants and cosurfactants on emulsion stability and foam quality. Langmuir 1991, 7(7), 1370–1377

    Article  CAS  Google Scholar 

  82. Barbetta, A.; Cameron, N. R. Morphology and surface area of emulsion-derived (polyHIPE) solid foams prepared with oil-phase soluble porogenic solvents: span 80 as surfactant. Macromolecules 2004, 37(9), 3188–3201

    Article  CAS  Google Scholar 

  83. Haibach, K.; Menner, A.; Powell, R.; Bismarck, A. Tailoring mechanical properties of highly porous polymer foams: silica particle reinforced polymer foams via emulsion templating. Polymer 2006, 47(13), 4513–4519

    Article  CAS  Google Scholar 

  84. Kovacic, S.; Preishuber-Pfluegl, F.; Pahovnik, D.; Zagar, E.; Slugovc, C. Covalent incorporation of the surfactant into high internal phase emulsion templated polymeric foams. Chem. Commun. 2015, 51(36), 7725–7728

    Article  CAS  Google Scholar 

  85. Binks, B. P.; Lumsdon, S. O. Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica. Langmuir 2000, 16(6), 2539–2547

    Article  CAS  Google Scholar 

  86. Kralchevsky, P. A.; Ivanov, I. B.; Ananthapadmanabhan, K. P.; Lips, A. On the thermodynamics of particle-stabilized emulsions: curvature effects and catastrophic phase inversion. Langmuir 2005, 21(1), 50–63

    Article  CAS  PubMed  Google Scholar 

  87. Colver, P. J.; Bon, S. A. F. Cellular polymer monoliths made via Pickering high internal phase emulsions. Chem. Mater. 2007, 19(7), 1537–1539

    Article  CAS  Google Scholar 

  88. Ikem, V. O.; Menner, A.; Bismarck, A. High internal phase emulsions stabilized solely by functionalized silica particles. Angew. Chem. Int. Ed. 2008, 47(43), 8277–8279

    Article  CAS  Google Scholar 

  89. Li, Z.; Ming, T.; Wang, J.; Ngai, T. High internal phase emulsions stabilized solely by microgel particles. Angew. Chem. Int. Ed. 2009, 48(45), 8490–8493

    Article  CAS  Google Scholar 

  90. Sun, G.; Li, Z.; Ngai, T. Inversion of particle-stabilized emulsions to form high-internal-phase emulsions. Angew. Chem. Int. Ed. 2010, 49(12), 2163–2166

    Article  CAS  Google Scholar 

  91. Ikem, V. O.; Menner, A.; Horozov, T. S.; Bismarck, A. Highly permeable macroporous polymers synthesized from Pickering medium and high internal phase emulsion templates. Adv. Mater. 2010, 22(32), 3588–3592

    Article  CAS  PubMed  Google Scholar 

  92. Yi, W.; Wu, H.; Wang, H.; Du, Q. Interconnectivity of macroporous hydrogels prepared via graphene oxide-stabilized Pickering high internal phase emulsions. Langmuir 2016, 32(4), 982–990

    Article  CAS  PubMed  Google Scholar 

  93. Ye, Y.; Jin, M.; Wan, D. One-pot synthesis of porous monolith-supported gold nanoparticles as an effective recyclable catalyst. J. Mater. Chem. A 2015, 3(25), 13519–13525

    Article  CAS  Google Scholar 

  94. Xu, H.; Zheng, X.; Huang, Y.; Wang, H.; Du, Q. Interconnected porous polymers with tunable pore throat size prepared via Pickering high internal phase emulsions. Langmuir 2016, 32(1), 38–45

    Article  CAS  PubMed  Google Scholar 

  95. Perrin, E.; Bizot, H.; Cathala, B.; Capron, I. Chitin nanocrystals for Pickering high internal phase emulsions. Biomacromolecules 2014, 15(10), 3766–3771

    Article  CAS  PubMed  Google Scholar 

  96. Li, J.; Zhang, J.; Zhao, Y.; Han, B.; Yang, G. High-internal-ionic liquid-phase emulsions. Chem. Commun. 2012, 48(7), 994–996

    Article  CAS  Google Scholar 

  97. Cameron, N. R.; Sherrington, D. C. Synthesis and characterization of poly(aryl ether sulfone) polyHIPE materials. Macromolecules 1997, 30(19), 5860–5869

    Article  CAS  Google Scholar 

  98. Menner, A.; Powell, R.; Bismarck, A. A new route to carbon black filled polyHIPEs. Soft Matter 2006, 2(4), 337–342

    Article  CAS  Google Scholar 

  99. Viswanathan, P.; Chirasatitsin, S.; Ngamkham, K.; Engler, A. J.; Battaglia, G. Cell instructive microporous scaffolds through interface engineering. J. Am. Chem. Soc. 2012, 134(49), 20103–20109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kovacic, S.; Matsko, N. B.; Jerabek, K.; Krajnc, P.; Slugovc, C. On the mechanical properties of hipe templated macroporous poly(dicyclopentadiene) prepared with low surfactant amounts. J. Mater. Chem. A 2013, 1(3), 487–490

    Article  CAS  Google Scholar 

  101. Viswanathan, P.; Johnson, D. W.; Hurley, C.; Cameron, N. R.; Battaglia, G. 3D surface functionalization of emulsiontemplated polymeric foams. Macromolecules 2014, 47(20), 7091–7098

    Article  CAS  Google Scholar 

  102. Xing, Y.; Peng, J.; Xu, K.; Gao, S.; Gui, X.; Liang, S.; Sun, L.; Chen, M. A soluble star-shaped silsesquioxane-cored polymer-towards novel stabilization of pH-dependent high internal phase emulsions. Phys. Chem. Chem. Phys. 2017, 19(34), 23024–23033

    Article  CAS  PubMed  Google Scholar 

  103. Oh, B. H. L.; Bismarck, A.; Chan-Park, M. B. High internal phase emulsion templating with self-emulsifying and thermoresponsive chitosan-graft-PNIPAM-graft-oligoproline. Biomacromolecules 2014, 15(5), 1777–1787

    Article  CAS  PubMed  Google Scholar 

  104. Chen, Q. J.; An, Z. S. Synthesis of star polymeric ionic liquids and use as the stabilizers for high internal phase emulsions. Chinese J. Polym. Sci. 2017, 35(1), 54–65

    Article  CAS  Google Scholar 

  105. Zhang, S.; Wang, D.; Pan, Q.; Gui, Q.; Liao, S.; Wang, Y. Light-triggered CO2 breathing foam via nonsurfactant high internal phase emulsion. ACS Appl. Mater. Interfaces 2017, 9, 34497–34505

    Article  CAS  PubMed  Google Scholar 

  106. Huang, X. P.; Yang, Y. D.; Shi, J. Z.; Ngo, H. T.; Shen, C. H.; Du, W. B.; Wang, Y. P. High-internal-phase emulsion tailoring polymer amphiphilicity towards an efficient NIR-sensitive bacteria filter. Small 2015, 11(37), 4876–4883

    Article  CAS  PubMed  Google Scholar 

  107. Chen, Y. W.; Wang, Z.; Wang, D. G.; Ma, N.; Li, C. C.; Wang, Y. P. Surfactant-free emulsions with erasable triggered phase inversions. Langmuir 2016, 32(42), 11039–11042.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21674127, 21422407 and 51373197).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yapei Wang.

Additional information

Invited paper for special issue of “Supramolecular Self-Assembly”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liao, S. & Wang, Y. Supramolecular Polymer Emulsifiers for One-step Complex Emulsions. Chin J Polym Sci 36, 288–296 (2018). https://doi.org/10.1007/s10118-018-2084-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2084-0

Keywords

Navigation