Skip to main content
Log in

Fuzzy clustering analysis for the loan audit short texts

  • Regular paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

In China, post-loan management is usually executed in the form of a visit survey conducted by a credit manager. Through a quarterly visit survey, a large number of loan audit short texts, which contain valuable information for evaluating the credit status of small and micro-enterprises, are collected. However, methods for analysing this type of short text remain lacking. This study proposes a method for processing short loan audit texts called fuzzy clustering analysis (FCA). This method first transforms short texts into a fuzzy matrix through lexical analysis; it then calculates the similarity between records based on each fuzzy matrix and constructs an association graph with this similarity. Finally, it uses a prism minimum spanning tree to extract clusters based on different \({\alpha }\) cuts. Experiments using actual data from a commercial bank in China revealed that the FCA yields suitable clustering results when handling loan audit briefs. Moreover, it exhibited superior performance compared to BIRCH, k-means, and fuzzy c-means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Moscato V, Picariello A, Sperlí G (2021) A benchmark of machine learning approaches for credit score prediction. Expert Syst Appl 165:113986. https://doi.org/10.1016/j.eswa.2020.113986

    Article  Google Scholar 

  2. Dastile X, Celik T, Potsane M (2020) Statistical and machine learning models in credit scoring: a systematic literature survey. Appl Soft Comput 91:106263. https://doi.org/10.1016/j.asoc.2020.106263

    Article  Google Scholar 

  3. Acheampong A, Elshandidy T (2021) Does soft information determine credit risk? Text-based evidence from European banks. J Int Financ Mark Inst Money. https://doi.org/10.1016/j.intfin.2021.101303

    Article  Google Scholar 

  4. Cao J, Xu X, Yin X, Pan B (2022) A risky large group emergency decision-making method based on topic sentiment analysis. Expert Syst Appl 195:116527. https://doi.org/10.1016/j.eswa.2022.116527

    Article  Google Scholar 

  5. Rashid J, Shah SMA, Irtaza A (2019) Fuzzy topic modeling approach for text mining over short text. Inf Process Manag 56(6):102060. https://doi.org/10.1016/j.ipm.2019.102060

    Article  Google Scholar 

  6. Yadollahi A, Shahraki AG, Zaiane OR (2017) Current state of text sentiment analysis from opinion to emotion mining. ACM Comput Surv 50(2):25. https://doi.org/10.1145/3057270

    Article  Google Scholar 

  7. Fan F, Zhao WX, Wen J, Xu G, Chang EY (2017) Mining collective knowledge: inferring functional labels from online review for business. Knowl Inf Syst 53(3):723–747. https://doi.org/10.1007/s10115-017-1050-4

    Article  Google Scholar 

  8. Ruspini EH (1969) A new approach to clustering. Inf Control 15(1):22–32

    Article  MATH  Google Scholar 

  9. Wang HY, Wang J, Wang G (2022) A survey of fuzzy clustering validity evaluation methods. Inf Sci 618:270–297. https://doi.org/10.1016/j.ins.2022.11.010

    Article  Google Scholar 

  10. Silva DMB, Pereira GHA, Magalhães TM (2022) A class of categorization methods for credit scoring models. Eur J Oper Res 296(1):323–331. https://doi.org/10.1016/j.ejor.2021.04.029

    Article  MathSciNet  MATH  Google Scholar 

  11. Kozodoi N, Jacob J, Lessmann S (2022) Fairness in credit scoring: assessment, implementation and profit implications. Eur J Oper Res 297(3):1083–1094. https://doi.org/10.1016/j.ejor.2021.06.023

    Article  MathSciNet  MATH  Google Scholar 

  12. Altman EI (2018) A fifty-year retrospective on credit risk models, the Altman Z-score family of models and their applications to financial markets and managerial strategies. J Credit Risk 14(4):1–34. https://doi.org/10.21314/JCR.2018.243

    Article  Google Scholar 

  13. Gunnarsson BR, Vanden Broucke S, Baesens B, Óskarsdóttir M, Lemahieu W (2021) Deep learning for credit scoring: do or don’t? Eur J Oper Res 295(1):292–305. https://doi.org/10.1016/j.ejor.2021.03.006

    Article  MathSciNet  MATH  Google Scholar 

  14. Louzada F, Ara A, Fernandes GB (2016) Classification methods applied to credit scoring: systematic review and overall comparison. Surv Oper Res Manag Sci 21(2):117–134. https://doi.org/10.1016/j.sorms.2016.10.001

    Article  MathSciNet  Google Scholar 

  15. Makki S, Assaghir Z, Taher Y, Haque R, Hacid MS, Zeineddine H (2019) An experimental study with imbalanced classification approaches for credit card fraud detection. IEEE Access 7:93010–93022. https://doi.org/10.1109/ACCESS.2019.2927266

    Article  Google Scholar 

  16. Jiang C, Lu W, Wang Z, Ding Y (2023) Benchmarking state-of-the-art imbalanced data learning approaches for credit scoring. Expert Syst Appl 213:118878. https://doi.org/10.1016/j.eswa.2022.118878

    Article  Google Scholar 

  17. Wang Z, Jiang C, Zhao H, Ding Y (2020) Mining semantic soft factors for credit risk evaluation in peer-to-peer lending. J Manag Inf Syst 37(1):282–308. https://doi.org/10.1080/07421222.2019.1705513

    Article  Google Scholar 

  18. Stevenson M, Mues C, Bravo C (2021) The value of text for small business default prediction: a deep learning approach. Eur J Oper Res 295(2):758–771. https://doi.org/10.1016/j.ejor.2021.03.008

    Article  MathSciNet  MATH  Google Scholar 

  19. Yang K, Yuan H, Lau RYK (2022) PsyCredit: an interpretable deep learning-based credit assessment approach facilitated by psychometric natural language processing. Expert Syst Appl 198:116847. https://doi.org/10.1016/j.eswa.2022.116847

    Article  Google Scholar 

  20. Dong C, Li Y, Gong H, Chen M, Li J, Shen Y, Yang M (2022) A survey of natural language generation. ACM Comput Surv. https://doi.org/10.1145/3554727

    Article  Google Scholar 

  21. Erdem E, Kuyu M, Yagcioglu S, Frank A, Parcalabescu L, Plank B, Babii A, Turuta O, Erdem A, Calixto I, Lloret E (2022) Neural natural language generation: a survey on multilinguality, multimodality, controllability and learning. J Artif Int Res. https://doi.org/10.1613/jair.1.12918

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen Y, Zhang H, Liu R, Ye Z, Lin J (2019) Experimental explorations on short text topic mining between LDA and NMF based Schemes. Knowl-Based Syst 163:1–13. https://doi.org/10.1016/j.knosys.2018.08.011

    Article  Google Scholar 

  23. Choudhary N, Aggarwal CC, Subbian K, Reddy CK (2022) Self-supervised short-text modeling through auxiliary context generation. ACM Trans Intell Syst Technol 13(3):51. https://doi.org/10.1145/3511712

    Article  Google Scholar 

  24. Feng J, Zhang Z, Ding C, Rao Y, Xie H, Wang FL (2022) Context reinforced neural topic modeling over short texts. Inf Sci 607:79–91. https://doi.org/10.1016/j.ins.2022.05.098

    Article  Google Scholar 

  25. Srivastava R, Singh P, Rana KPS, Kumar V (2022) A topic modeled unsupervised approach to single document extractive text summarization. Knowl-Based Syst 246:108636. https://doi.org/10.1016/j.knosys.2022.108636

    Article  Google Scholar 

  26. Shi Y, Zhu LY, Li W, Gao K, Zheng YC (2019) Survey on classic and latest textual sentiment analysis articles and techniques. Int J Inf Technol Decis Mak 18(4):1243–1287. https://doi.org/10.1142/S0219622019300015

    Article  Google Scholar 

  27. Wang L, Niu JW, Yu S (2020) SentiDiff: combining textual information and sentiment diffusion patterns for Twitter sentiment analysis. IEEE Trans Knowl Data Eng 32(10):2026–2039. https://doi.org/10.1109/TKDE.2019.2913641

    Article  Google Scholar 

  28. Ahmed M, Chen Q, Li ZH (2020) Constructing domain-dependent sentiment dictionary for sentiment analysis. Neural Comput Appl 32(18):14719–14732. https://doi.org/10.1007/s00521-020-04824-8

    Article  Google Scholar 

  29. Alekseev V, Egorov E, Vorontsov K, Goncharov A, Nurumov K, Buldybayev T (2021) TopicBank: collection of coherent topics using multiple model training with their further use for topic model validation. Data Knowl Eng. https://doi.org/10.1016/j.datak.2021.101921

    Article  Google Scholar 

  30. Consoli S, Barbaglia L, Manzan S (2022) Fine-grained, aspect-based sentiment analysis on economic and financial lexicon. Knowl-Based Syst 247:108781. https://doi.org/10.1016/j.knosys.2022.108781

    Article  Google Scholar 

  31. Xu J, Liu J, Araki K (2015) A hybrid topic model for multi-document summarization. IEICE Trans Inf Syst E98D(5):1089–1094. https://doi.org/10.1587/transinf.2014EDP7229

    Article  Google Scholar 

  32. Zhou H, Yu H, Hu R (2017) Topic evolution based on the probabilistic topic model: a review. Front Comput Sci 11(5):786–802. https://doi.org/10.1007/s11704-016-5442-5

    Article  Google Scholar 

  33. Han HY, Zhang JP, Yang J, Shen YR, Zhang YS (2018) Generate domain-specific sentiment lexicon for review sentiment analysis. Multimed Tools Appl 77(16):21265–21280. https://doi.org/10.1007/s11042-017-5529-5

    Article  Google Scholar 

  34. Chauhan U, Shah A (2021) Topic modeling using latent Dirichlet allocation: a survey. ACM Comput Surv. https://doi.org/10.1145/3462478

    Article  Google Scholar 

  35. Xu G, Yu Z, Yao H, Li F, Meng Y, Wu X (2019) Chinese text sentiment analysis based on extended sentiment dictionary. IEEE Access 7:43749–43762. https://doi.org/10.1109/ACCESS.2019.2907772

    Article  Google Scholar 

  36. Gul S, Räbiger S, Saygın Y (2022) Context-based extraction of concepts from unstructured textual documents. Inf Sci 588:248–264. https://doi.org/10.1016/j.ins.2021.12.056

    Article  Google Scholar 

  37. Sinoara RA, Camacho-Collados J, Rossi RG, Navigli R, Rezende SO (2019) Knowledge-enhanced document embeddings for text classification. Knowl-Based Syst 163:955–971. https://doi.org/10.1016/j.knosys.2018.10.026

    Article  Google Scholar 

  38. Rahimi Z, Homayounpour MM (2020) Tens-embedding: a tensor-based document embedding method. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.113770

    Article  Google Scholar 

  39. Wu Y, Zhao S, Li W (2020) Phrase2Vec: phrase embedding based on parsing. Inf Sci 517:100–127. https://doi.org/10.1016/j.ins.2019.12.031

    Article  Google Scholar 

  40. Yu H (2020) Bibliographic automatic classification algorithm based on semantic space transformation. Multim Tools Appl 79(13–14):9283–9297. https://doi.org/10.1007/s11042-019-7400-3

    Article  Google Scholar 

  41. Song R, Gao S, Yu Z, Zhang Y, Zhou G (2021) Case2vec: joint variational autoencoder for case text embedding representation. Int J Mach Learn Cybern 12(9):2517–2528. https://doi.org/10.1007/s13042-021-01335-3

    Article  Google Scholar 

  42. Tang Z, Li W, Li Y, Zhao W, Li S (2020) Several alternative term weighting methods for text representation and classification. Knowl-Based Syst. https://doi.org/10.1016/j.knosys.2020.106399

    Article  Google Scholar 

  43. Liu S, Wang X, Collins C, Dou W, Ouyang F, El-Assady M, Jiang L, Keim DA (2019) Bridging text visualization and mining: a task-driven survey. IEEE Trans Vis Comput Graph 25(7):2482–2504. https://doi.org/10.1109/TVCG.2018.2834341

    Article  Google Scholar 

  44. Jung H, Lee BG (2020) Research trends in text mining: semantic network and main path analysis of selected journals. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.113851

    Article  Google Scholar 

  45. Li M (2021) Capturing the risk signals for a specific emerging technology: an integrated framework of text mining. IEEE Trans Eng Manag 68(5):1245–1258. https://doi.org/10.1109/TEM.2019.2930335

    Article  Google Scholar 

  46. Cheerkoot-Jalim S, Khedo KK (2021) A systematic review of text mining approaches applied to various application areas in the biomedical domain. J Knowl Manag 25(3):642–668. https://doi.org/10.1108/JKM-09-2019-0524

    Article  Google Scholar 

  47. Han L, Rajasekar A, Li S (2022) An evidence-based credit evaluation ensemble framework for online retail SMEs. Knowl Inf Syst 64(6):1603–1623. https://doi.org/10.1007/s10115-022-01682-9

    Article  Google Scholar 

  48. Li S, Han L (2023) A two-stage NER method for online-sale comments. Springer, Singapore. https://doi.org/10.1007/978-981-19-2768-3_26

    Book  Google Scholar 

  49. Ferreira R, Lins RD, Simske SJ, Freitas F, Riss M (2016) Assessing sentence similarity through lexical, syntactic and semantic analysis. Comput Speech Lang 39:1–28. https://doi.org/10.1016/j.csl.2016.01.003

    Article  Google Scholar 

  50. Takahashi S, Tanaka-Ishii K (2019) Evaluating computational language models with scaling properties of natural language. Comput Linguist 45(3):481–513. https://doi.org/10.1162/coli_a_00355

    Article  Google Scholar 

  51. Wang J, Lin J, Han L (2023) Word2vec fuzzy clustering algorithm and its application in credit evaluation. Springer, Singapore. https://doi.org/10.1007/978-981-19-2768-3_56

    Book  Google Scholar 

  52. Pop PC (2020) The generalized minimum spanning tree problem: an overview of formulations, solution procedures and latest advances. Eur J Oper Res 283(1):1–15. https://doi.org/10.1016/j.ejor.2019.05.017

    Article  MathSciNet  MATH  Google Scholar 

  53. Khan MS, Lohani QMD (2022) Topological analysis of intuitionistic fuzzy distance measures with applications in classification and clustering. Eng Appl Artif Intell 116:105415. https://doi.org/10.1016/j.engappai.2022.105415

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No. 72101279).

Author information

Authors and Affiliations

Authors

Contributions

LH and JQ wrote the main manuscript text, ZL proposed research ideas, and ZZ revised the manuscript and summarized literatures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jipeng Qiang.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Liu, Z., Qiang, J. et al. Fuzzy clustering analysis for the loan audit short texts. Knowl Inf Syst 65, 5331–5351 (2023). https://doi.org/10.1007/s10115-023-01943-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-023-01943-1

Keywords

Navigation