Skip to main content
Log in

EcoLight+: a novel multi-modal data fusion for enhanced eco-friendly traffic signal control driven by urban traffic noise prediction

  • Regular paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Urban traffic congestion is of utmost importance for modern societies due to population and economic growth. Thus, it contributes to environmental problems like increasing greenhouse gas emissions and noise pollution. Improved traffic flow in urban networks relies heavily on traffic signal control. Hence, optimizing cycle timing at many intersections is paramount to reducing congestion and increasing sustainability. This paper introduces an alternative to conventional traffic signal control, EcoLight+, which incorporates future noise predictions with the deep dueling Q-network reinforcement Learning algorithm to reduce noise levels, CO\({_{2}}\) emissions, and fuel consumption. An innovative data fusion approach is also proposed to improve our LSTM-based noise prediction model by integrating heterogeneous data from different sources. Our proposed solution allows the system to achieve higher efficiency than its competitors based on real-world data from Tallinn, Estonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. https://inrix.com/scorecard/.

  2. Link to the source code: https://github.com/doua-ounoughi/EcoLightPlus.

  3. https://ristmikud.tallinn.ee/index.php/cams.

  4. https://ristmikud.tallinn.ee/index.php/temperature.

  5. https://www.tomtom.com.

References

  1. Sanvicente E, Kielmanowicz D, Rodenbach J, Chicco A, Ramos E (2020) Key technology and social innovation drivers for car sharing. deliverable 2.2 of the stars h2020 project. Technical report

  2. Ounoughi C, Yeferny T, Ben Yahia S (2021) Zed-tte: zone embedding and deep neural network based travel time estimation approach. In: 2021 International joint conference on neural networks (IJCNN), pp 1–10. 10.1109/IJCNN52387.2021.9533456

  3. Ahmad Rafidi MA, Abdul Hamid AH (2014) Synchronization of traffic light systems for maximum efficiency along Jalan Bukit Gambier, Penang, Malaysia. SHS Web of Conferences 11:01006. https://doi.org/10.1051/shsconf/20141101016

  4. EEA (2017) Road traffic remains biggest source of noise pollution in Europe. https://www.eea.europa.eu/highlights/road-traffic-remains-biggest-source

  5. Ounoughi C, Touibi G, Ben Yahia S (2022) Ecolight: eco-friendly traffic signal control driven by urban noise prediction. In: Strauss C, Cuzzocrea A, Kotsis G, Tjoa AM, Khalil I (eds) Database Expert Syst Appl. Springer, Cham, pp 205–219

    Chapter  Google Scholar 

  6. Ounoughi C, Ben Yahia S (2023) Data fusion for ITS: a systematic literature review. Inf Fusion 89:267–291. https://doi.org/10.1016/j.inffus.2022.08.016

    Article  Google Scholar 

  7. Staab J, Schady A, Weigand M, Lakes T, Taubenböck H (2021) Predicting traffic noise using land-use regression-a scalable approach. J Expo Sci Environ Epidemiol. https://doi.org/10.1038/s41370-021-00355-z

    Article  Google Scholar 

  8. Ahmed AA, Pradhan B, Chakraborty S, Alamri A, Lee CW (2021) An optimized deep neural network approach for vehicular traffic noise trend modeling. IEEE Access 9(1995):107375–107386. https://doi.org/10.1109/ACCESS.2021.3100855

    Article  Google Scholar 

  9. Khan J, Ketzel M, Jensen SS, Gulliver J, Thysell E, Hertel O (2021) Comparison of road traffic noise prediction models: CNOSSOS-EU, Nord 2000 and TRANEX. Environ Pollut 270:116240. https://doi.org/10.1016/j.envpol.2020.116240

    Article  Google Scholar 

  10. Singh D, Upadhyay R, Pannu HS, Leray D (2021) Development of an adaptive neuro fuzzy inference system based vehicular traffic noise prediction model. J Ambient Intell Humaniz Comput 12(2):2685–2701. https://doi.org/10.1007/s12652-020-02431-y

    Article  Google Scholar 

  11. Zhang X, Kuehnelt H, De Roeck W (2021) Traffic noise prediction applying multivariate bi-directional recurrent neural network. Appl Sci (Switz). https://doi.org/10.3390/app11062714

    Article  Google Scholar 

  12. Mai-Tan H, Pham-Nguyen H-N, Long NX, Minh QT (2020) Mining urban traffic condition from crowd-sourced data. SN Comput Sci 1(4):225. https://doi.org/10.1007/s42979-020-00244-6

    Article  Google Scholar 

  13. Wang H, He X-Y, Chen L-Y, Yin J-R, Han L, Liang H, Zhu F-B, Zhu R-J, Gao Z-M, Xu M-L (2020) Cognition-driven traffic simulation for unstructured road networks. J Comput Sci Technol 35(4):875–888. https://doi.org/10.1007/s11390-020-9598-y

    Article  Google Scholar 

  14. Yeferny T, Yahia SB (2021) A Markov chain-based data dissemination protocol for vehicular ad hoc networks. Comput Commun 180:303–314. https://doi.org/10.1016/j.comcom.2021.10.001

    Article  Google Scholar 

  15. Alkouz B, Al Aghbari Z (2020) SNSJam: road traffic analysis and prediction by fusing data from multiple social networks. Inf Process Manag 57(1):102139. https://doi.org/10.1016/j.ipm.2019.102139

    Article  Google Scholar 

  16. Essien A, Petrounias I, Sampaio P, Sampaio S (2019) Improving urban traffic speed prediction using data source fusion and deep learning. In: 2019 IEEE international conference on big data and smart computing (BigComp). IEEE, pp 1–8. 10.1109/BIGCOMP.2019.8679231

  17. Essien A, Petrounias I, Sampaio P, Sampaio S (2020) A deep-learning model for urban traffic flow prediction with traffic events mined from twitter. World Wide Web. https://doi.org/10.1007/s11280-020-00800-3

  18. Yang X, Yuan Y, Liu Z (2020) Short-term traffic speed prediction of urban road with multi-source data. IEEE Access 8:87541–87551. https://doi.org/10.1109/ACCESS.2020.2992507

    Article  Google Scholar 

  19. Pu B, Liu Y, Zhu N, Li K, Li K (2020) ED-ACNN: novel attention convolutional neural network based on encoder-decoder framework for human traffic prediction. Appl Soft Comput 97:106688. https://doi.org/10.1016/j.asoc.2020.106688

    Article  Google Scholar 

  20. Liu Q, Cai Y, Jiang H, Lu J, Chen L (2018) Traffic state prediction using ISOMAP manifold learning. Phys A Stat Mech Appl 506:532–541. https://doi.org/10.1016/j.physa.2018.04.031

    Article  Google Scholar 

  21. Le T, Kovács P, Walton N, Vu HL, Andrew LLH, Hoogendoorn SSP (2015) Decentralized signal control for urban road networks. Transp Res Part C Emerg Technol 58:431–450. https://doi.org/10.1016/j.trc.2014.11.009

    Article  Google Scholar 

  22. Bravo Y, Ferrer J, Luque G, Alba E (2016) Smart mobility by optimizing the traffic lights: a new tool for traffic control centers. In: Alba E, Chicano F, Luque G (eds) Smart cities. Springer, Cham, pp 147–156

    Chapter  Google Scholar 

  23. Wei H, Zheng G, Yao H, Li Z (2018) Intellilight: a reinforcement learning approach for intelligent traffic light control. In: Proceedings of the 24th ACM SIGKDD International conference on knowledge discovery & data mining. KDD ’18. Association for Computing Machinery, New York, NY, USA, pp 2496–2505. 10.1145/3219819.3220096

  24. Wei H, Chen C, Zheng G, Wu K, Gayah V, Xu K, Li Z (2019) Presslight: learning max pressure control to coordinate traffic signals in arterial network. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. KDD ’19. Association for Computing Machinery, New York, NY, USA, pp 1290–1298. 10.1145/3292500.3330949

  25. Wei H, Xu N, Zhang H, Zheng G, Zang X, Chen C, Zhang W, Zhu Y, Xu K, Li Z (2019) Colight: Learning network-level cooperation for traffic signal control. In: Proceedings of the 28th ACM international conference on information and knowledge management. CIKM ’19. Association for Computing Machinery, New York, NY, USA, pp 1913–1922. 10.1145/3357384.3357902

  26. Xiong Y, Zheng G, Xu K, Li Z (2019) Learning traffic signal control from demonstrations. In: Proceedings of the 28th ACM international conference on information and knowledge management. CIKM ’19. Association for Computing Machinery, New York, NY, USA, pp 2289–2292. 10.1145/3357384.3358079

  27. Zheng G, Xiong Y, Zang X, Feng J, Wei H, Zhang H, Li Y, Xu K, Li Z (2019) Learning phase competition for traffic signal control. In: Proceedings of the 28th ACM International conference on information and knowledge management. CIKM ’19. Association for Computing Machinery, New York, NY, USA, pp 1963–1972. 10.1145/3357384.3357900

  28. Chen C, Wei H, Xu N, Zheng G, Yang M, Xiong Y, Xu K, Li Z (2020) Toward a thousand lights: decentralized deep reinforcement learning for large-scale traffic signal control. In: Proceedings of the AAAI conference on artificial intelligence, vol 34, pp 3414–3421

  29. Zang X, Yao H, Zheng G, Xu N, Xu K, Li Z (2020) Metalight: value-based meta-reinforcement learning for traffic signal control. In: Proceedings of the AAAI conference on artificial intelligence, vol 34, pp 1153–1160

  30. Zhang H, Liu C, Zhang W, Zheng G, Yu Y (2020) Generalight: improving environment generalization of traffic signal control via meta reinforcement learning. In: Proceedings of the 29th ACM international conference on information & knowledge management, pp 1783–1792

  31. Ng SC, Kwok CP (2020) An intelligent traffic light system using object detection and evolutionary algorithm for alleviating traffic congestion in hong kong. Int J Comput Intell Syst 13(1):802–809. https://doi.org/10.2991/ijcis.d.200522.001

    Article  Google Scholar 

  32. Alaidi AH, Aljazaery I, Alrikabi H, Mahmood I, Abed F (2020) Design and implementation of a smart traffic light management system controlled wirelessly by arduino. Int J Interact Mob Technol (IJIM) 14(07):32–40

    Article  Google Scholar 

  33. Grohe M (2020) Word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings of structured data. In: Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on principles of database systems. PODS’20. Association for Computing Machinery, New York, NY, USA, pp 1–16. 10.1145/3375395.3387641

  34. Howard J, Ruder S (2018) Universal language model fine-tuning for text classification. In: Proceedings of the 56th annual meeting of the association for computational Linguistics (vol 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 328–339. 10.18653/v1/P18-1031

  35. Kazemi SM, Goel R, Eghbali S, Ramanan J, Sahota J, Thakur S, Wu S, Smyth C, Poupart P, Brubaker M (2020) Time2Vec: learning a vector representation of time. https://openreview.net/forum?id=rklklCVYvB

  36. Bochkovskiy A, Wang C-Y, Liao H-YM (2020) Yolov4: optimal speed and accuracy of object detection. arXiv:2004.10934

  37. SUMO (2022) Simulation of urban mobility. https://sumo.dlr.de/docs/index.html

  38. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

    MathSciNet  MATH  Google Scholar 

  39. Kingma DP, Adam JB (2015) A method for stochastic optimization. In: Bengio Y, LeCun Y (eds) 3rd International conference on learning representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, conference track proceedings (2015)

  40. CALSTART (2020) Drive to zero’s zero-emission technology inventory (ZETI). https://globaldrivetozero.org/tools/zero-emission-technology-inventory/

Download references

Acknowledgements

This work was supported by grants to TalTech - TalTech Industrial (H2020, grant No 952410), Estonian Research Council (PRG1573), and EU-Astra - TUT Development Plan for 2016-2022 (ASTRA) reg no. 2014-2020.4.1.16-0032.

Author information

Authors and Affiliations

Authors

Contributions

CO: Conceptualization, Methodology, Software, Validation, Visualization, Writing - Review & Editing. DO: Methodology, Software. SBY: Review & Editing.

Corresponding author

Correspondence to Chahinez Ounoughi.

Ethics declarations

Conflict of interest

The authors declare no coflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ounoughi, C., Ounoughi, D. & Ben Yahia, S. EcoLight+: a novel multi-modal data fusion for enhanced eco-friendly traffic signal control driven by urban traffic noise prediction. Knowl Inf Syst 65, 5309–5329 (2023). https://doi.org/10.1007/s10115-023-01938-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-023-01938-y

Keywords

Navigation