Skip to main content
Log in

Dyadic bivariate wavelet multipliers in L 2(ℝ2)

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

The single 2 dilation wavelet multipliers in one-dimensional case and single A-dilation (where A is any expansive matrix with integer entries and |detA| = 2) wavelet multipliers in twodimensional case were completely characterized by Wutam Consortium (1998) and Li Z., et al. (2010). But there exist no results on multivariate wavelet multipliers corresponding to integer expansive dilation matrix with the absolute value of determinant not 2 in L 2(ℝ2). In this paper, we choose \(2I_2 = \left( {\begin{array}{*{20}c} 2 & 0 \\ 0 & 2 \\ \end{array} } \right)\) as the dilation matrix and consider the 2I 2-dilation multivariate wavelet Φ = {ψ 1, ψ 2, ψ 3}(which is called a dyadic bivariate wavelet) multipliers. Here we call a measurable function family f = {f 1, f 2, f 3} a dyadic bivariate wavelet multiplier if \(\Psi _1 = \left\{ {\mathcal{F}^{ - 1} \left( {f_1 \widehat{\psi _1 }} \right),\mathcal{F}^{ - 1} \left( {f_2 \widehat{\psi _2 }} \right),\mathcal{F}^{ - 1} \left( {f_3 \widehat{\psi _3 }} \right)} \right\}\) is a dyadic bivariate wavelet for any dyadic bivariate wavelet Φ = {ψ 1, ψ 2, ψ 3}, where \(\hat f\) and F −1 denote the Fourier transform and the inverse transform of function f respectively. We study dyadic bivariate wavelet multipliers, and give some conditions for dyadic bivariate wavelet multipliers. We also give concrete forms of linear phases of dyadic MRA bivariate wavelets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dai, X., Larson, D.: Wandering vectors for unitary systems and orthogonal wavelets. Memoirs. Amer. Math. Soc., 134(640), (1998)

  2. The Wutam Consortium: Basic properties of wavelets. J. Fourier Anal. Appl., 4(4), 575–594 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Liang, R.: Some Properties of Wavelets, Ph.D. Dissertation, University of North Carolina at Charlotte, 1998

  4. Li, Y.: On a class of bidimensional nonseparable wavelet multipliers. J. Math. Anal. Appl., 270, 543–560 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, Z., Dai, X., Diao, Y., et al.: Multipliers, phases and connectivity of MRA wavelets in L 2(ℝ2). J. Fourier Anal. Appl., 16, 155–176 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Meyer, Y.: Wavelets and Operators, Cambridge Studies in Advanced Mathematics 37, Cambridge University Press, Cambridge, 1992

    MATH  Google Scholar 

  7. Daubechies, I.: Ten Lecture on Wavelets, CBMS Lecture Notes 61, SIAM, 1992

  8. Bownik, M.: On characterization of multiwavelets in L 2(ℝn). Proc. Amer. Math. Soc., 129(11), 3265–3274 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Han, B.: On dual wavelet tight frames. Appl. Comput. Harmon. Anal., 4, 380–413 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Han, B.: Wavelets, M.Sc. thesis at Institute of Mathematics, The Chinese Academy of Sciences, June 1994

  11. Han, B.: Some applications of projection operators in wavelets. Acta Mathematica Sinica, 1, 105–112 (1995)

    Google Scholar 

  12. Bownik, M.: On the existence of multiresoltion analysis for framelets. Math. Ann., 332, 705–720 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bownik, M., Rzeszotnik, Z.: The spectral function of shift-invariant spaces. Michigan Math. J., 51, 387–414 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hernándes, E., Weiss, G.: A First Course on Wavelets, CRC Press, Boca Raton, 1996

    Google Scholar 

  15. Han, B.: Symmetric multivariate orthogonal refinable functions. Appl. Comput. Harmon. Anal., 17, 277–292 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gröchenig, K., Madych, W. R.: Multiresolution analysis, Haar bases, and self-similar tilings of ℝn. IEEE Trans. Inf. Th., 38(2), 556–568 (1992)

    Article  Google Scholar 

  17. Chui, C. K.: An Introduction to Wavelets, Academic Press, New York, 1992

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Yan Li.

Additional information

Supported by NSFC (Grant Nos. 10671062 and 11071065), Ph. D Programs Foundation of Ministry Education of China (Grant No. 20094306110004); the first author is also partially supported by the Project-sponsored by SRF for ROCS, SEM, the Fundamental Research Funds for the Central Universities, and China Postdoctoral Science Foundation funded project (Grant No. 20100480942)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z.Y., Shi, X.L. Dyadic bivariate wavelet multipliers in L 2(ℝ2). Acta. Math. Sin.-English Ser. 27, 1489–1500 (2011). https://doi.org/10.1007/s10114-011-9772-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-011-9772-9

Keywords

MR(2000) Subject Classification

Navigation