Skip to main content
Log in

Climate change scenarios and projected impacts for forest productivity in Guanacaste Province (Costa Rica): lessons for tropical forest regions

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

The Guanacaste Province of Costa Rica is home to highly diverse forests which are under threat of degradation due to ongoing climatic changes. There is concern that increasing temperatures and changes in precipitation will force these forests outside of their optimal growth ranges leading to widespread degradation of forest productivity. The objectives of this study are, therefore, to project and assess climatic changes in Guanacaste and to build a relationship between these climatic changes and forest productivity with the goal of projecting productivity trends into the future. The ClimateSA model was used to project RCP4.5 and 8.5 scenarios from 2018 to 2080 and then assess these projections for the mean and extreme future conditions. Furthermore, the MODIS gross primary productivity (GPP) algorithm was used to build a relationship between forest productivity and the vapour pressure deficit scalar (VPD scalar) and project GPP alteration under future climatic scenarios both seasonally and annually. Results indicate that Guanacaste’s mean annual precipitation will stay within the historic levels for both the RCP4.5 and 8.5 scenarios. The monthly and annual temperatures increase in all projections. Results also indicate that the productivity-climate relationship follows a quadratic relationship between GPP and the VPD scalar. This quadratic relationship leads to areas with higher precipitation (high VPD scalar) experiencing an increase in GPP as they dry in the future. In drier areas (low VPD scalar), reduced precipitation will stabilize or decrease GPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abtew W, Melesse A (2013) Evaporation and evapotranspiration: measurements and estimations. Springer Science & Business Media. https://doi.org/10.1007/978-94-007%2D%2D1

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. Food and Agriculture Organization of the United Nations, Rome, Italy. 300(9):D05109. ISBN 92-5-104219-5

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, …, Gonzalez P (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4):660–684. https://doi.org/10.1016/j.foreco.2009.09.001

  • Alvarez-Davila E, Cayuela L, Gonzalez-Caro S, Aldana AM, Stevenson PR, Phillips O, Cogollo A, Penuela MC, Hildebrand P, Jimenez E, Melo O, Londono-Vega AC, Mendoza I, Velasquez O, Fernandez F, Serna F, Serna M, Velazquez-Rua C, Benitez D, Rey-Benayas JM (2017) Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. PLoS One 12(3):e0171072. https://doi.org/10.1371/journal.pone.0171072

  • Arroyo-Mora JA, Sanchez-Azofeifa GA, Rivard B, Calvo-Alvarado J, Janzen DH (2005) Dynamics in landscape structure and composition for the Chorotega region, Costa Rica from 1960 to 2000. Agric Ecosyst Environ 106(1):27–39. https://doi.org/10.1016/j.agee.2004.07.002

    Article  Google Scholar 

  • Augelli J (1989) Modernization of Costa Rica’s beef cattle economy: 1950-1985. J Cult Geogr 9(2):77–90. https://doi.org/10.1080/08873638909478464

    Article  Google Scholar 

  • Babcock M, Wong-Parodi G, Small MJ, Grossmann I (2016) Stakeholder perceptions of water systems and hydro-climate information in Guanacaste, Costa Rica. Earth Perspect 3(1):1–13. https://doi.org/10.1186/s40322-016-0035-x

    Article  Google Scholar 

  • Bonan G (2019) Climate change and terrestrial ecosystem modeling. 456 pp. ISBN: 9781107043787

  • Cai W, Santoso A, Wang G, Yeh SW, An SI, Cobb K, ..., Wu L (2015) ENSO and greenhouse warming. Nat Clim Chang 5:849–859. https://doi.org/10.1038/nclimate2743

  • Calvo-Alvarado J, McLennan B, Sanchez-Azofeifa GA, Garvin T (2009) Deforestation and forest restoration in Guanacaste Costa Rica: putting conservation policies in context. For Ecol Manag 258:931–940. https://doi.org/10.1016/j.foreco.2008.10.035

    Article  Google Scholar 

  • Castellanos-Acuna D, Vance-Borland KW, St. Clair JB, Hamann A, Lopez-Upton J, Gomez-Pineda E, Ortega-Rodriguez JM, Saenz-Romero C (2018) Climate-based seed zones for Mexico: guiding reforestation under observed and projected climate change. New For 49(3):297–309. https://doi.org/10.1007/s11056-017-9620-6

    Article  Google Scholar 

  • Castro SM, Sanchez-Azofeifa GA, Sato H (2018) Effect of drought on productivity in a Costa Rican tropical dry forest. Environ Res Lett 13(4):045001. https://doi.org/10.1088/1748-9326/aaacbc

    Article  CAS  Google Scholar 

  • Channan S, Collins K, Emanuel WR (2014) Global mosaics of the standard MODIS land cover type data. University of Maryland and the Pacific Northwest National Laboratory, College Park, Maryland, USA, 30. http://glcf.umd.edu/data/lc/

  • Chen Z, Yu G, Ge J, Sun X, Hirano T, Saigusa N, ..., Zhao F (2017) Temperature and precipitation control of the spatial variation of terrestrial ecosystem carbon exchange in the Asian region. Agric For Meteorol 182–183:266–276. https://doi.org/10.1016/j.agrformet.2013.04.026

  • Clarke L, Edmonds J, Jacoby H, Pitcher H, Reilly J, Richels R (2007) Scenarios of greenhouse gas emissions and atmospheric concentrations. US Department of Energy Publications, 6. http://digitalcommons.unl.edu/usdoepub/6

  • Cuicui J, Guirui Y, Nianpeng H, Anna N, Jianping G, Zhongmin H (2017) Spatial pattern of grassland aboveground biomass and its environmental controls in the Eurasian steppe. J Geogr Sci 27(1):3–22. https://doi.org/10.1007/s11442-017-1361-0

    Article  Google Scholar 

  • Dai Z, Johnson KD, Birdsey RA, Hernandez-Stefanoni JL, Dupuy JM (2015) Assessing the effect of climate change on carbon sequestration in a Mexican dry forest in the Yucatan Peninsula. Ecol Complex 24:46–56. https://doi.org/10.1016/j.ecocom.2015.09.004

    Article  Google Scholar 

  • Daly C, Halbeib M, Smith J, Gibson WP, Doggett MK, Taylor GH, Curtis J, Pasteris PP (2008) Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int J Climatol 28:2031–2064. https://doi.org/10.1002/joc.1688

    Article  Google Scholar 

  • Diaz-Gustavo N, Martinez-Salvador M, Gracia-Hernandez JL, Norzgaray-Campos MM, Luna-Gonzalez A, Gonzalez-Ocampo H, Hassan QK (2015) Carbon sequestration of Caesalpinia platyloba S. Watt (Leguminosae) (Lott 1985) in the tropical deciduous forest. PLoS One 10(5):e0125478. https://doi.org/10.1371/journal.pone.0125478

    Article  CAS  Google Scholar 

  • Enquist CAF (2002) Predicted regional impacts of climate change on the geographical distribution and diversity of tropical forests in Costa Rica. J Biogeogr 29(4):519–534. https://doi.org/10.1046/j.1365-2699.2002.00695.x

    Article  Google Scholar 

  • Gao P, Li P, Zhao B, Xu R, Zhao G, Sun W, Mu X (2017) Use of double mass curves in hydrologic benefit evaluations. Hydrol Process 31(26):4639–4646. https://doi.org/10.1002/hyp.11377

    Article  Google Scholar 

  • Gavito ME, Sandoval-Perez AL, Castillo K, Cohen-Salgado D, Colarte-Aviles ME, Mora F, Santibanez-Reneteria A, Siddique I, Urquijo-Ramos C (2018) Resilience of soil nutrient availability and organic matter decomposition to hurricane impact in a tropical dry forest ecosystem. For Ecol Manag 426:81–90 https://doi.org/10.1016/j.foreco.2017.08.041

  • Goetz SJ, Prince SD, Small J, Gleason ACR (2000) Interannual variability of global terrestrial primary production: results of a model driven with satellite observations. J Geophys Res-Atmos 105(D15):20077–20091. https://doi.org/10.1029/2000JD900274

    Article  Google Scholar 

  • Golicher DJ, Cayuela L, Newton AC (2012) Effects of climate change on the potential species richness of Mesoamerican forests. Biotropica. 44(3):284–293. https://doi.org/10.1111/j.1744-7429.2011.00815.x

    Article  Google Scholar 

  • Greenwood S, Ruiz-Benito P, Martínez-Villalta J, Lloret F, Kitzberger T, Allen CD, Fensham R, Laughlin DC, Kattge J, Bönisch G, Kraft NJ (2017) Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol Lett 20(4):539–553. https://doi.org/10.1111/ele.12748

    Article  Google Scholar 

  • Gross M, Wan H, Rasch PJ, Caldwell PM, Williamson DL, Klocke D, Jablonowski C, Thatcher DR, Wood N, Cullen M, Beare B, Willett M, Lemarié F, Blayo E, Malardel S, Termonia P, Gassmann A, Lauritzen PH, Johansen H, Zarzycki CM, Sakaguchi K, Leung R (2018) Physics–dynamics coupling in weather, climate, and earth system models: challenges and recent progress. Mon Weather Rev 146:3505–3544. https://doi.org/10.1175/MWR-D-17-0345.1

    Article  Google Scholar 

  • Hamann A, Wang T, Spittlehouse AL, Murdock TQ (2013) A comprehensive, high-resolution database of historical and projected climate surface for western North America. Am Meteorol Soc:1307–1309. https://doi.org/10.1175/BAMS-D-12-00145.1

  • Haselhorst DS, Tcheng DK, Moreno JE, Punyansena SW (2017) The effects of seasonal and long-term climatic variability on neotropical flowering phenology: an ecoinformatic analysis of aerial pollen data. Ecol Inform 4:54–63. https://doi.org/10.1016/j.ecoinf.2017.06.005

    Article  Google Scholar 

  • Hofhansl F, Kobler J, Ofner J, Drage S, Pölz EM, Wanek W (2014) Sensitivity of tropical forest aboveground productivity to climate anomalies in SW Costa Rica. Glob Biogeochem Cycles 28:1437–1454. https://doi.org/10.1002/2014GB004934.Instituto

    Article  CAS  Google Scholar 

  • Holdridge LR (1967) Life-zone ecology. Tropical Science Center, San Jose, Costa Rica 206 pp

    Google Scholar 

  • Instituto Costarricense de Turismo (2017) Principlaes actividade realizada por los turistas. Dirrecion de planeamiento y desarollo turistico p3. https://ict.go.cr/es/

  • Instituto Nacional de Estadística y Censo (2011) Población total por sexo, total de viviendas por ocupación y promedio de ocupantes según provincia, cantón y distrito. San José, Costa Rica : Instituto Nacional de Estadística y Censos. 140. http://www.inec.go.cr/documento/censo-2011-poblacion-total-por-sexo-total-de-viviendas-por-ocupacion-y-promedio-de

  • Jadin I, Meyfroidt P, Lambin EF (2016) International trade, and land use intensification and spatial reorganization explain Costa Rica’s forest transition. Environ Res Lett 11(3):035005. https://doi.org/10.1088/1748-9326/11/3/035005

    Article  Google Scholar 

  • Janzen D (2000) Costa Rica’s area de conservación Guanacaste: a long march to survival through non-damaging biodevelopment. Biodiversity 1(2):7–20. https://doi.org/10.1080/14888386.2000.9712501

    Article  Google Scholar 

  • Janzen DH, Hallwachs W (2016) Biodiversity conservation history and future in Costa Rica: the case of area de conservación Guanacaste (ACG). Costa Rican Ecosystems. The University of Chicago Press, Chicago and London, pp 290–341. https://doi.org/10.7208/chicago/9780226121642.001.0001

    Book  Google Scholar 

  • Liang XZ, Wu Y, Chambers RG, Schmoldt DL, Gao W, Liu C, Liu YA, Sun C, Kennedy JA (2017) Determining climate effect on US total agricultural productivity. PNAS. 14(12):E2285–E2292. https://doi.org/10.1073/pnas.1615922114

  • Liu X, Chen C, Li R, Long F, Zhang L, Zhang Q, Li J (2017) Water-use efficiency of an old-growth forest in lower subtropical China. Sci Rep 7:42761. https://doi.org/10.1038/srep42761

    Article  CAS  Google Scholar 

  • Lopezaraiza-Mikel M, Quesada M, Alvarez-Anorve M, Avila-Cabadilla L, Marten-Rodriguez S, Calvo Alvarado J, Espirito-Santo MM, …, Vazquez-Ramirez A (2014) Phenological patterns of tropical dry forest along latitudinal and successional gradients in the neotropics. Tropical dry forests in the Americas: ecology, conservation, and management. 101–128. https://doi.org/10.13140/2.1.3518.1766

  • Magrin GO, Marengo JA, Boulanger JP, Buckeridge MS, Castellanos E, Poveda G (2014) Central and South America in climate change 2014: impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) . Cambridge University Press, Cambridge and New York, pp 1499–1566

  • Maza-Villalobos S, Poorter L, Martínez-Ramos M (2013) Effects of ENSO and temporal rainfall variation on the dynamics of successional communities in old-field succession of a tropical dry forest. PLoS One 8(12):e82040. https://doi.org/10.1371/journal.pone.0082040

    Article  Google Scholar 

  • Mendivelso HA, Camarero JJ, Gutierrez E, Zuidema PA (2014) Time-dependent effects of climate and drought on tree growth in a neotropical dry forest: short-term tolerance vs. long-term sensitivity. Agric For Meteorol 188:13–23. https://doi.org/10.1016/j.agrformet.2013.12.010

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712. https://doi.org/10.1002/joc.1181

    Article  Google Scholar 

  • Navar-Chaidez J (2011) The spatial distribution of aboveground biomass in tropical forests of Mexico. Trop Subtrop Agroecosyst 14(1):149–158 ISSN: 1870-0462

    Google Scholar 

  • Nightingale J, Phinn S, Held A (2004) Ecosystem process models at multiple scales for mapping tropical forest productivity. Prog Phys Geogr 28(2):241–281. https://doi.org/10.1191/0309133304pp411ra

    Article  Google Scholar 

  • Pau S, Wolkovich EM, Cook BI, Nytch CJ, Regetz J, Zimmerman JK, Wright SJ (2013) Clouds and temperature drive dynamic changes in tropical flower production. Nat Clim Chang 3:838–842. https://doi.org/10.1038/nclimate1934

    Article  Google Scholar 

  • Pont YR, Meinshausen M (2018) Warming assessment of the bottom-up Paris Agreement emissions pledge. Nat Commun 9:4810. https://doi.org/10.1038/s41467-018-07223-9

    Article  CAS  Google Scholar 

  • Poorter L, Bongers F, Aide TM, Almeyda Zambrano AM, Balvanera P, Becknell JM, Boukili V, Brancalion PH, Broadbent EN, Chazdon RL, Craven D, de Almeida-Cortez JS, Cabral GA, de Jong BH, Denslow JS, Dent DH, DeWalt S, Dupuy JM, Durán SM, Espírito-Santo MM, Fandino MC, César RG, Hall JS, Hernandez-Stefanoni JL, Jakovac CC, Junqueira AB, Kennard D, Letcher SG, Licona JC, Lohbeck M, Marín-Spiotta E, Martínez-Ramos M, Massoca P, Meave JA, Mesquita R, Mora F, Muñoz R, Muscarella R, Nunes YR, Ochoa-Gaona S, de Oliveira AA, Orihuela-Belmonte E, Peña-Claros M, Pérez-García EA, Piotto D, Powers JS, Rodríguez-Velázquez J, Romero-Pérez IE, Ruíz J, Saldarriaga JG, Sanchez-Azofeifa A, Schwartz NB, Steininger MK, Swenson NG, Toledo M, Uriarte M, van Breugel M, van der Wal H, Veloso MD, Vester HF, Vicentini A, Vieira IC, Bentos TV, Williamson GB, Rozendaal DM (2016) Biomass resilience of neotropical secondary forests. Nature 530:211–214. https://doi.org/10.1038/nature16512

    Article  CAS  Google Scholar 

  • Riahi K, Gruebler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Chang 74(7):887–935. https://doi.org/10.1016/j.techfore.2006.05.026

    Article  Google Scholar 

  • Running S, Zhao M (2015) Daily GPP and annual NPP (MOD17A2/A3) products NASA Earth Observing System MODIS land algorithm. MOD17 User’s Guide. Version 3.0, Univ. of Mont: Missoula, Mont

  • Sanaphre-Villanueva L, Dupuy JM, Andrade JL, Reyes-García C, Jackson PC, Paz H (2017) Patterns of plant functional variation and specialization along secondary succession and topography in a tropical dry forest. Environ Res Lett 12(5):055004. https://doi.org/10.1088/1748-9326/aa6baa

    Article  Google Scholar 

  • Sanchez-Azofeifa GA (2015) Analysis of forest cover in Costa Rica between 1960 and 2013. Ambientico. 253:4–11 ISSN: 1409-214X

    Google Scholar 

  • Sanchez-Azofeifa, Quesada M, Rodriguez JP, Nassar JM, Stoner KE, Castillo A, Garvin T, Zent EL, Calvo-Alvarado JC, Kalacska MER, Fajardo L, Gamon J, Reyes P (2005) Research priorities of the neotropical dry forests. Biotropica. 37(4):477–485. https://doi.org/10.1111/j.1744-7429.2005.00066.x

  • Sanchez-Azofeifa A, Pfaff A, Robalino JA, Boomhower JP (2007) Costa Rica’s payments for environmental services program: intention, implementation, and impact. Conserv Biol 21(5):1165–1173. https://doi.org/10.1111/j.1523-1739.2007.00751.x

  • Sanchez-Azofeifa GA, Castro KL, Rivard B, Kalascka MR, Harriss RC. (2003). Remote sensing research priorities in tropical dry forest environments. Biotropica 35(2):134–142. https://doi.org/10.1111/j.1744-7429.2003.tb00273.x

  • Seiler C, Hutjes RWA, Krujit B, Quispe J, Anez S, Arora VK, Melton JR, Hickler T, Kabat P (2014) Modelling forest dynamics along climate gradients in Bolivia. J Geophys Res 119:758–773. https://doi.org/10.1002/2013JG002509

    Article  Google Scholar 

  • Soares PM, Cardoso RM, Mirando PM, Viterbo P, Belo-Pereira (2012) Assessment of the ENSEMBLES regional climate models in the representation of precipitation variability and extremes over Portugal. J Geophys Res-Atmos 117(D7):D07114. https://doi.org/10.1029/2011JD016768

    Article  Google Scholar 

  • Stan K, Sanchez-Azofeifa A (2018) Deforestation and secondary growth in Costa Rica along the path of development. Reg Environ Chang 19:587–597. https://doi.org/10.1007/s10113-018-1432-5

    Article  Google Scholar 

  • Stan K, Sanchez-Azofeifa A (2019) Tropical dry forest diversity, climatic response, and resilience in a changing climate. Forests 10(5):443. https://doi.org/10.3390/f10050443

    Article  Google Scholar 

  • Stansifer CL, Elbow GS, Karnes TL, Parker FD (2017) Costa Rica. Encyclopedia Britannica. Retrieved from: https://www.britannica.com/place/Costa-Rica

  • Stott PA, Christidis N, Otto FEL, Sun Y, Vanderlinden JP, Oldenborgh GL, ..., Zwiers FW (2016) Attribution of extreme weather and climate related events. Wiley Interdiscip Rev Clim Chang 7(1):23–41. https://doi.org/10.1002/wcc.380

  • Taranu L (2016) Projection of changes in productivity of major agricultural crops in the Republic of Moldova according to CMIP5 ensemble of 21 GCMs for RCP2.6, RCP4.5, and RCP8.5 scenarios. Sci Pap Ser A Agron 59:431–440 ISSN online: 2285-5807

    Google Scholar 

  • Taylor MA, Centella A, Charley J, Bezanilla A, Campbell J, Borrajero I, Stephenson T, Nurmohamed R (2013) The precis Caribbean story: lessons and legacies. Am Meteorol Soc:1065–1073. https://doi.org/10.1175/BAMS-D-11-00235.1

  • Tong Z, Zhang J, Meng P, Li J, Zheng N (2014) Ecosystem water use efficiency in a warm-temperate mixed plantation in the North China. J Hydrol 512:221–228 https://doi.org/10.1016/j.jhydrol.2014.02.042

  • Wang T, Hamann A, Spittlehouse DL, Murdock TQ (2012) Climate WNA—high-resolution spatial climate data for western North America. J Appl Meteorol Climatol 51:16–29. https://doi.org/10.1175/JAMC-D-11-043.1

    Article  Google Scholar 

  • Wang T, Hamann A, Spittlehouse DL, Carroll C (2016) Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS One 11(6):e0156720. https://doi.org/10.1371/journal.pone.0156720

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Natural Science and Engineering Research Council of Canada (NSERC) to Kayla Stan (NSERC CGS-D) and Alberta Innovates GSS programs, the University of Alberta, the Natural Science and Engineering Research Council of Canada (NSERC-Discovery), and the Inter-American Institute for Global Change Research (IAI) Collaborative Research Network (Tropi-Dry CRN3 025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Sanchez-Azofeifa.

Additional information

Communicated by Virginia Burkett

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stan, K., Sanchez-Azofeifa, A., Calvo-Rodriguez, S. et al. Climate change scenarios and projected impacts for forest productivity in Guanacaste Province (Costa Rica): lessons for tropical forest regions. Reg Environ Change 20, 14 (2020). https://doi.org/10.1007/s10113-020-01602-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10113-020-01602-z

Keywords

Navigation