Skip to main content

Advertisement

Log in

Livestock system sustainability and resilience in intensive production zones: which form of ecological modernization?

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Changes in agriculture during the twentieth century led to high levels of food production based on increasing inputs and specialization of farms and agricultural regions. To address negative externalities of these changes, two forms of ecological modernization of agriculture are promoted: “weak” ecological modernization, mainly based on increasing input efficiency through crop and animal monitoring and nutrient recycling, and “strong” ecological modernization, based on increasing agrobiodiversity at different space and time scales and within or among farms to develop ecosystem services and in turn reduce industrial inputs even more. Because characterizing the sustainability of these two forms of ecological modernization remains an issue, we review the literature on livestock systems to compare their advantages and drawbacks. After defining the livestock system as a local social–ecological system embedded in a complex multi-level and multi-domain system, we characterize the two forms of ecological modernization (weak vs. strong). When sustainability is defined as a state that should be maintained at a certain level and assessed through a set of indicators (environmental, economic, and social), we highlight that one ecological modernization form might have an advantage for certain sustainability criteria, but a disadvantage for others. When sustainability is viewed as a process (resilience), we find that these two forms of ecological modernization are based on different properties: governance of the entire agri-food chain for weak ecological modernization versus local governance of agriculture and its biophysical and social diversity and connectivity, and management of slow variables for strong ecological modernization. The relevance of this sustainability-analysis approach is illustrated by considering different types of dairy livestock systems, organic agriculture and integrated crop–livestock systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acosta-Alba I, Lopéz-Ridaura S, van der Werf HM, Leterme P, Corson MS (2012) Exploring sustainable farming scenarios at a regional scale: an application to dairy farms in Brittany. J Clean Prod 28:160–167. doi:10.1016/j.jclepro.2011.11.061

    Article  Google Scholar 

  • Altieri MA, Nicholls CI (2004) Biodiversity and pest management in agroecosystems. Haworth Press, New York

    Google Scholar 

  • Altieri MA, Funes-Monzote FR, Petersen P (2011) Agroecologically efficient agricultural systems for smallholder farmers: contributions to food sovereignty. Agron Sustain Dev 32:1–13. doi:10.1007/s13593-011-0065-6

    Article  Google Scholar 

  • Anderies JM, Folke C, Walker B, Ostrom E (2013) Aligning key concepts for global change policy: robustness, resilience, and sustainability. Ecol Soc 18(2):8

    Google Scholar 

  • Anderson DM, Fredrickson EL, Estell RE (2012) Managing livestock using animal behavior: mixed-species stocking and flerds. Animal 6:1339–1349. doi:10.1017/S175173111200016X

    Article  CAS  Google Scholar 

  • Asai M, Langer V, Frederiksen P, Jacobsen BH (2014) Livestock farmer perceptions of successful collaborative arrangements for manure exchange: a study in Denmark. Agric Syst. doi:10.1016/j.agsy.2014.03.007

    Google Scholar 

  • Bell LW, Moore AD (2012) Integrated crop–livestock systems in Australian agriculture: trends, drivers and implications. Agric Syst 111:1–12. doi:10.1016/j.agsy.2012.04.003

    Article  Google Scholar 

  • Biggs R, Schlüter M, Biggs D, Bohensky EL, BurnSilver S, Cundill G, Dakos V, Daw TM, Evans LS, Kotschy K, Leitch AM, Meek C, Quinlan A, Raudsepp-Hearne A, Robards MD, Schoon ML, Schultz L, West PC (2012) Toward principles for enhancing the resilience of ecosystem services. Annu Rev Environ Resour 37:421–448

    Article  Google Scholar 

  • Cabell JF, Oelofse M (2012) An indicator framework for assessing agroecosystem resilience. Ecol Soc 17(1):18

    Google Scholar 

  • Coquil X, Béguin P, Dedieu B (2014) Transition to self-sufficient mixed crop–dairy farming systems. Renew Agric Food Syst. doi:10.1017/S1742170513000458

    Google Scholar 

  • Coulon J, Delacroix-Buchet A, Martin B, Pirisi A (2004) Relationships between ruminant management and sensory characteristics of cheeses: a review. Le Lait 84:221–241. doi:10.1051/lait

    Article  Google Scholar 

  • Darnhofer I, Moller H, Fairweather J (2010a) Farm resilience for sustainable food production: a conceptual framework. Int J Agric Sustain 8:186–198

  • Darnhofer I, Bellon S, Dedieu B, Milestad R (2010b) Adaptiveness to enhance the sustainability of farming systems. A review. Agric For Sustain Dev 30:545–555. doi:10.1051/agro/2009053

    Article  Google Scholar 

  • Dewhurst RJ, Shingfield KJ, Lee MRF, Scollan ND (2006) Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Anim Feed Sci Technol 131:168–206. doi:10.1016/j.anifeedsci.2006.04.016

    Article  CAS  Google Scholar 

  • Doré T, Makowski D, Malézieux E, Munier-Jolain N, Tchamitchian M, Tittonell P (2011) Facing up to the paradigm of ecological intensification in agronomy: revisiting methods, concepts and knowledge. Eur J Agron 34:197–210. doi:10.1016/j.eja.2011.02.006

    Article  Google Scholar 

  • Doreau M, Martin C, Popova M, Morgavi DP (2011) Leviers d’action pour réduire la production de méthane entérique par les ruminants. Productions Animales 24:461–474

    CAS  Google Scholar 

  • Dumont B, Fortun-Lamothe L, Jouven M, Thomas M, Tichit M (2012) Prospects from agroecology and industrial ecology for animal production in the 21st century. Animal 1028–1043. doi:10.1017/S1751731112002418

  • Duru M, Farès M, Thérond O (2014) Un cadre conceptuel pour penser maintenant (et organiser demain), la transition agroécologique de l’agriculture dans les territoires (in French). A conceptual framework for thinking now (and organising tomorrow) the agroecological transition at the level of the territory Cahiers Agricultures 23:84–97

  • Entz MH, Thiessen Martens JR (2009) Organic crop–livestock systems. In: Francis CA (ed) Organic farming: the ecological system. ASA-CSSA-SSSA Book & Multimedia, Madison, pp 69–84

  • Eviner VT, Hawkes CV (2008) Embracing variability in the application of plant–soil interactions to the restoration of communities and ecosystems. Restor Ecol 16:713–729. doi:10.1111/j.1526-100X.2008.00482.x

    Article  Google Scholar 

  • Ewert F, van Ittersum MK, Heckelei T, Therond O, Bezlepkina I, Andersen A (2011) Scale changes and model linking methods for integrated assessment of agri-environmental systems. Agric Ecosyst Environ 142:6–17. doi:10.1016/j.agee.2011.05.016

    Article  Google Scholar 

  • FAO (2006) Livestock’s long shadow. FAO collection: environmental issues and options. FAO, Rome, 390 p

  • Figuière C, Metereau R (2012) At the crossroads of industrial ecology and Syal. Advance the sustainability of a localized rural development. Communication au XXVIII journées de l’ATM, Orléans, 11–13 juin

  • Folke C, Carpenter S, Elmqvist T, Gunderson L, Holling CS, Walker B (2002) Resilience and sustainable development: building adaptive capacity in a world of transformations. Ambio 31:437–440

    Article  Google Scholar 

  • Francis C (2009) Education in organic farming and food systems. In: Francis CA (ed) Organic farming: the ecological system. American Society of Agronomy, Madison, Wisconsin pp 283–300

  • Francis CA, Porter P (2011) Ecology in sustainable agriculture practices and systems. Crit Rev Plant Sci 30:64–73. doi:10.1080/07352689.2011.554353

    Article  Google Scholar 

  • Franzluebbers AJ, Stuedemann J (2013) Crop and cattle production responses to tillage and cover crop management in an integrated crop–livestock system in the southeastern USA. Eur J Agron. doi:10.1016/j.eja.2013.05.009

    Google Scholar 

  • Gebbers R, Adamchuk VI (2010) Precision agriculture and food security. Science (New York, NY) 327:828–831. doi:10.1126/science.1183899

    Article  CAS  Google Scholar 

  • Geels F (2002) Technological transitions as evolutionary reconfiguration processes: a multi-level persepective and a case-study. Res Policy 31:1257–1274

    Article  Google Scholar 

  • Gilbert CL, Morgan CW (2010) Food price volatility. Philos Trans R Soc B Biol Sci 365:3023–3034. doi:10.1098/rstb.2010.0139

    Article  CAS  Google Scholar 

  • Glasser F, Ferlay A, Chilliard Y (2008) Oilseed lipid supplements and fatty acid composition of cow milk: a meta-analysis. J Dairy Sci 91:4687–4703. doi:10.3168/jds.2008-0987

    Article  CAS  Google Scholar 

  • Gliessman SR (2006) Animals in agroecosystems. In: Agroecology: the ecology of sustainable food systems, 2nd edn. CRC Press, Boca Raton, pp 269–285

  • Gomiero T, Pimentel D, Paoletti MG (2011) Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Crit Rev Plant Sci 30:95–124. doi:10.1080/07352689.2011.554355

    Article  Google Scholar 

  • Hendrickson JR, Hanson JD, Tanaka DL, Sassenrath G (2008) Principles of integrated agricultural systems: introduction to processes and definition. Renew Agric Food Syst 23:265–271. doi:10.1017/S1742170507001718

    Article  Google Scholar 

  • Hodgson J (1985) The significance of sward characteristics in the management of temperate sown pastures, vol 15. In: Proceedings of the XV international grassland congress, Kyoto, Japan, pp 63–66

  • Holt-Giménez E, Altieri MA (2012) Agroecology, food sovereignty and the new green revolution. J Sustain Agric 37:90–102. doi:10.1080/10440046.2012.716388

    Google Scholar 

  • Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Horlings LG, Marsden TK (2011) Towards the real green revolution? Exploring the conceptual dimensions of a new ecological modernisation of agriculture that could “feed the world”. Glob Environ Chang 21:441–452. doi:10.1016/j.gloenvcha.2011.01.004

    Article  Google Scholar 

  • Ingram J (2008) Agronomist–farmer knowledge encounters: an analysis of knowledge exchange in the context of best management practices in England. Agric Hum Values 25:405–418. doi:10.1007/s10460-008-9134-0

    Article  Google Scholar 

  • Jackson L, van Noordwijk M, Bengtsson J, Foster W, Lipper L, Pulleman M, Said M, Snaddon J, Vodouhe R (2010) Biodiversity and agricultural sustainagility: from assessment to adaptive management. Curr Opin Environ Sustain 80–87. doi:10.1016/j.cosust.2010.02.007

  • Janzen HH (2011) What place for livestock on a re-greening earth? Anim Feed Sci Technol 166–167:783–796. doi:10.1016/j.anifeedsci.2011.04.055

    Article  Google Scholar 

  • Jiggins J, Roling N (2000) Adaptive management: potential and limitations for ecological governance. Int J Agric Resour Gov Ecol 1:28–42

    Google Scholar 

  • Kajikawa Y (2008) Research core and framework of sustainability science. Sustain Sci 3:215–239. doi:10.1007/s11625-008-0053-1

    Article  Google Scholar 

  • Kirschenmann F (2010) Alternative agriculture in an energy- and resource-depleting future. Renew Agric Food Syst 25:85–89

    Article  Google Scholar 

  • Klerkx L, Van Mierlo B, Leeuwis C (2012) Evolution of systems approaches to agricultural innovation: concepts, analysis and interventions. In: Darnhofer I, Gibbon D, Dedieu B (eds) Farming systems research into the 21st century: the new dynamic. Springer, Dordrecht, pp 459–485

    Google Scholar 

  • Knickel K, Brunori G, Rand S (2009) Towards a better conceptual framework for innovation processes in agriculture and rural development: from linear models to systemic approaches. J Agric Educ Ext 15:131–146

    Article  Google Scholar 

  • Kremen C, Iles A, Bacon C (2012) Diversified farming systems: an agroecological systems-based. Ecol Soc 17(4):44

    Google Scholar 

  • Kuisma M, Kahiluoto H, Havukainen J, Lehtonen E, Luoranen M, Myllymaa T, Grönroos J, Horttanaine M (2012) Understanding biorefining efficiency—the case of agrifood waste. Bioresour Technol 135:588–597. doi:10.1016/j.biortech.2012.11.038

    Article  Google Scholar 

  • Lamarque P, Tappeiner U, Turner C, Steinbacher M, Bardgett RD, Szukics U, Schermer M, Lavorel S (2011) Stakeholder perceptions of grassland ecosystem services in relation to knowledge on soil fertility and biodiversity. Reg Environ Chang 791–804. doi:10.1007/s10113-011-0214-0

  • Lamine C (2011) Transition pathways towards a robust ecologization of agriculture and the need for system redesign. Cases from organic farming and IPM. J Rural Stud 27:209–219. doi:10.1016/j.jrurstud.2011.02.001

    Article  Google Scholar 

  • Le Rohellec C, Mouchet C (2008) Efficacité économique de systèmes laitiers herbagers en agriculture durable (RAD): une comparaison avec le RICA. Fourrages 193:107–113

    Google Scholar 

  • Le Rohellec V, Mouchet C, Boutin M, Brault J (2011) Analyse de l’efficacité économique et environnementale des systèmes laitiers herbagers économes et autonomes 2007–2010. Rencontre Recherche Ruminants, Paris, pp 297–300

  • Leat P, Lamprinopoulou C, Revoredo-Giha C, KupiecTeahan B (2011) Agri-food supply chains and sustainability-related issues: evidence from across the Scottish agri-food economy. In: 85th annual conference of the Agricultural Economics Society, 25 pp

  • Lebacq T, Baret PV, Stilmant D (2012) Sustainability indicators for livestock farming. A review. Agron Sustain Dev 33:327–331. doi:10.1007/s13593-012-0121-x

    Google Scholar 

  • Lemaire G, Hodgson J, Chabbi A (2011) Introduction: food security and environmental impacts—challenge for grassland sciences. In Grassland productivity and ecosystem services. CABI, Wallingford, pp xiii–xvii, Hardback, 312 pp

  • Lemaire G, Franzluebbers A, Carvalho PCDF, Dedieu B (2014) Integrated crop–livestock systems: strategies to achieve synergy between agricultural production and environmental quality. Agric Ecosyst Environ 190:4–8. doi:10.1016/j.agee.2013.08.009

    Article  Google Scholar 

  • Lovell TS, DeSantis S, Nathan CA, Breton Olson M, Méndez VE, Kominami HC, Erickson DL, Morris KS, Morris WB (2010) Integrating agroecology and landscape multifunctionality in Vermont: an evolving framework to evaluate the design of agroecosystems. Agric Syst 103:327–341. doi:10.1016/j.agsy.2010.03.003

    Article  Google Scholar 

  • Marsden T (2012) Towards a real sustainable agri-food security and food policy: beyond the ecological fallacies? Polit Q 83:139–145. doi:10.1111/j.1467-923X.2012.02242.x

    Article  Google Scholar 

  • Martens J, Thiessen R, Entz MH (2011) Integrating green manure and grazing systems: a review. Can J Plant Sci 91:811–824. doi:10.4141/CJPS10177

    Article  Google Scholar 

  • Matthews KH, Johnonson RJ (2013) Alternative beef production systems: issues and implications/LDPM-218-01. Economic Research Service/USDA. Alternative beef production systems: issues and implications/LDPM-218-01, 34 pp

  • Moraine M, Duru M, Nicholas P, Leterme P, Therond O (2014) Farming system design for innovative crop–livestock integration in Europe. Animal 1–14. doi:10.1017/S1751731114001189

  • Morris C, Winter M (1999) Integrated farming systems: the third way for European agriculture? Land Use Policy 16:193–205. doi:10.1016/S0264-8377(99)00020-4

    Article  CAS  Google Scholar 

  • Niggli U, Slabe A, Schmid O, Halberg N, Schlüter M (2008) Vision for an organic food and farming research agenda to 2025 organic knowledge for the future iFOAM Regional Group European Union (IFOAM EU Group) Technology Platform ‘Organics’, 45 pp

  • Power AG (2010) Ecosystem services and agriculture: tradeoffs and synergies. Philos Trans R Soc B Biol Sci 365:2959–2971. doi:10.1098/rstb.2010.0143

    Article  Google Scholar 

  • RAD (2013) (sustainable agriculture network) www.agriculture-durable.org/

  • Rains GC, Olson DM, Lewis WJ (2011) Redirecting technology to support sustainable farm management practices. Agric Syst 104:365–370. doi:10.1016/j.agsy.2010.12.008

    Article  Google Scholar 

  • Reganold JP, Andrews PK, Reeve JR, Carpenter-Boggs L, Schadt CW, Alldredge JR, Ross CF, Davies NM, Zhou J, El-Shemy HA (2010) Fruit and soil quality of organic and conventional strawberry agroecosystems. PLoS One 5(9):e12346

  • Ryschawy J, Choisis N, Choisis JP, Joannon A, Gibon A (2012) Mixed crop-livestock systems: an economic and environmental-friendly way of farming? Animal 6:1722–1730. doi:10.1017/S1751731112000675

    Article  CAS  Google Scholar 

  • Sanderson MA, Archer D, Hendrickson J, Kronberg S, Liebig M, Nichols K, Schmer M, Tanaka D, Aguilar D (2013) Diversification and ecosystem services for conservation agriculture: outcomes from pastures and integrated crop–livestock systems. Renew Agric Food Syst 1–16. doi:10.1017/S1742170512000312

  • Schiere JB, Darnhofer I, Duru M (2012) Dynamics in farming systems: of changes and choices. In: Darnhofer I, Gibbon D, Dedieu B (eds) Farming systems research into the 21st century: the new dynamic. Springer, Dordrecht, pp 339–365

    Google Scholar 

  • Shennan C (2008) Biotic interactions, ecological knowledge and agriculture. Philos Trans R Soc B Biol Sci 363:717–739. doi:10.1098/rstb.2007.2180

    Article  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353. doi:10.1016/j.agee.2011.01.017

    Article  Google Scholar 

  • Sorathiya LM, Fulsoundar B, Tyagi KK (2014) Eco-friendly and modern methods of livestock waste recycling for enhancing farm profitability. Int J Recycl Org Waste Agric 3:50. doi:10.1007/s40093-014-0050-6

    Article  Google Scholar 

  • Sulc RM, Franzluebbers AJ (2013) Exploring integrated crop–livestock systems in different ecoregions of the United States. Eur J Agron. doi:10.1016/j.eja.2013.10.007

    Google Scholar 

  • Sutherland LA, Burton RJF, Ingram J, Blackstock K, Slee B, Gotts N (2012) Triggering change: towards a conceptualisation of major change processes in farm decision-making. J Environ Manag 104:142–151. doi:10.1016/j.jenvman.2012.03.013

    Article  Google Scholar 

  • Tauseef SM, Premalatha M, Abbasi T, Abbasi S (2013) Methane capture from livestock manure. J Environ Manag 117:187–207. doi:10.1016/j.jenvman.2012.12.022

    Article  CAS  Google Scholar 

  • Ten Napel J, van der Veen AA, Oosting SJ, Groot Koerkamp PWG (2011) A conceptual approach to design livestock production systems for robustness to enhance sustainability. Livest Sci 139:150–160. doi:10.1016/j.livsci.2011.03.007

    Article  Google Scholar 

  • Tomich TP (2010a) Agroecology. Annu Rev Environ Resour 36:193–222

    Article  Google Scholar 

  • Tomich TP (2010b) Agroecology. Annu Rev Environ Resour 36:110301095711090. doi:10.1146/annurev-environ-012110-121302

    Google Scholar 

  • Tripp R (2008) Agricultural change and low-input technology. In: Snapp S, Pound B (eds) Agricultural systems: agroecology and rural innovation for development. Elsevier, Amsterdam, pp 129–160

    Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity- ecosystem service management. Ecol Lett 8:857–874. doi:10.1111/j.1461-0248.2005.00782.x

    Article  Google Scholar 

  • Turner BL II (2010) Vulnerability and resilience: coalescing or paralleling approaches for sustainability science? Glob Environ Chang 20:570–576. doi:10.1016/j.gloenvcha.2010.07.003

    Article  Google Scholar 

  • Van Oudenhoven APE, Petz K, Alkemade R, Hein L, de Groot RS (2012) Framework for systematic indicator selection to assess effects of land management on ecosystem services. Ecol Indic 21:110–122. doi:10.1016/j.ecolind.2012.01.012

    Article  Google Scholar 

  • Vanclay F (2004) Social principles for agricultural extension to assist in the promotion of natural resource management. Aust J Exp Agric 44:213–223

    Article  Google Scholar 

  • Vanloqueren G, Baret PV (2009) How agricultural research systems shape a technological regime that develops genetic engineering but locks out agroecological innovations. Res Policy 38:971–983. doi:10.1016/j.respol.2009.02.008

    Article  Google Scholar 

  • Vermeulen SJ, Aggarwal PK, Ainslie A, Angelone C, Campbell BM, Challinir AJ, Hansen JW, Ingram JSI, Jarvis A, Kristjanson P, Lau C, Nelson GC, Thornton PK, Wollenberg E (2012) Options for support to agriculture and food security under climate change. Environ Sci Policy 15:136–144. doi:10.1016/j.envsci.2011.09.003

    Article  Google Scholar 

  • Veysset P, Lherm M, Bébin D (2010) Productive, environmental and economic performances assessments of organic and conventional suckler cattle farming systems. Org Agric 1:1–16. doi:10.1007/s13165-010-0001-0

    Article  Google Scholar 

  • Walker B, Holling CS, Carpenter SR, Kinzig A (2004) Resilience, adaptability and transformability in social–ecological systems. Ecol Soc 9(2):5

    Google Scholar 

  • WCED (1987) Report of the World Commission on environment and development. NGO Committee on Education of the Conference of NGOs from United Nations web sites

  • Wilkins RJ (2008) Eco-efficient approaches to land management: a case for increased integration of crop and animal production systems. Philos Trans R Soc B Biol Sci 363:517–525. doi:10.1098/rstb.2007.2167

    Article  CAS  Google Scholar 

  • Williams BK (2011) Passive and active adaptive management: approaches and an example. J Environ Manag 92:1371–1378. doi:10.1016/j.jenvman.2010.10.039

    Article  Google Scholar 

  • Wilson G (2008) From “weak” to “strong” multifunctionality: conceptualising farm-level multifunctional transitional pathways. J Rural Stud 24:367–383. doi:10.1016/j.jrurstud.2007.12.010

    Article  Google Scholar 

  • Zhang W, Ricketts TH, Kremen C, Carney K, Swinton SM (2007) Ecosystem services and dis-services to agriculture. Ecol Econ 64:253–260. doi:10.1016/j.ecolecon.2007.02.024

    Article  Google Scholar 

Download references

Acknowledgments

This paper has benefited of discussions that occurred in three projects: O2LA (Locally Adapted Organisms and Organizations; ANR-09-STRA-09) and TATABOX (Territorial Agroecological Transition in Action: a tool-BOX for designing and implementing a territorial agroecological system transition in agriculture; ANR-13-AGRO-0006), both funded by the French National Agency for Research, and CANTOGETHER (Crops and ANimals TOGETHER, FP7, Grant Agreement No. 289328), funded by the European Commission’s Seventh Framework Programme (Food, Agriculture and Fisheries, Biotechnology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Duru.

Additional information

Editor: Nicolas Dendoncker.

Michel Duru and Olivier Therond are the Co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duru, M., Therond, O. Livestock system sustainability and resilience in intensive production zones: which form of ecological modernization?. Reg Environ Change 15, 1651–1665 (2015). https://doi.org/10.1007/s10113-014-0722-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-014-0722-9

Keywords

Navigation