Skip to main content
Log in

Precipitation or evapotranspiration? Bayesian analysis of potential error sources in the simulation of sub-basin discharges in the Czech Elbe River basin

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

A global change assessment required detailed simulation of water availability in the Elbe River basin in Central Europe (148,268 km²). Using the spatially semi-distributed, eco-hydrological model SWIM, spatial calibration was applied. For 225 sub-areas covering the model domain (134,890 km²), evapotranspiration and groundwater dynamics were individually adjusted. The calibration aimed at good correspondences with long-term run-off contributions and the hydrographs for two extreme years. Measured run-off was revised from water management effects to produce quasi-natural discharges for calibration. At some gauges, there were large volume differences between these reference data and the simulations of the spatially uncalibrated model. Most affected were some sub-basins in the Czech part of the basin where the density of available climate stations was much lower than the German part. Thus, both erroneous precipitation data and systematic flaws in the evapotranspiration module of SWIM could have caused the differences. In order to identify the major error source and to validate the choice of spatial calibration parameters (evapotranspiration and groundwater dynamic corrections), MCMC analyses were made for three Czech areas. Optional precipitation correction had been considered by a third calibration parameter in the MCMC assessment. In two of the three cases, it can be shown that evapotranspiration corrections are preferable as precipitation errors are negligible. In the third case, where the analyses indicate a substantial error in precipitation data, an interpolation problem of the climate data at the edge of the model domain could be found. Hence, the applied method shows its potential to identify specific sources of uncertainty in hydrological modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ajami NK, Duan Q, Sorooshian S (2007) An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour Res 43(1):W01403. doi:10.1029/2005WR004745

    Article  Google Scholar 

  • Andersen J, Refsgaard JC, Jensen KH (2001) Distributed hydrological modelling of the Senegal River Basin—model construction and validation. J Hydrol 247(3–4):200–214. doi:10.1016/S0022-1694(01)00384-5

    Article  Google Scholar 

  • Arnold JG, Allen PM, Bernhardt A (1993) A comprehensive surface-groundwater flow model. J Hydrol 142(1–4):47–69. doi:10.1016/0022-1694(93)90004-S

    Article  Google Scholar 

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment Part I: model development. J Am Water Resour Assoc 34(1):73–89. doi:10.1111/j.17521688.1998.tb05961.x

    Article  CAS  Google Scholar 

  • Artinyan E, Habets F, Noilhan J, Ledoux E, Dimitrov D, Martin E, Le Moigne P (2008) Modelling the water budget and the riverflows of the Maritsa basin in Bulgaria. Hydrol Earth Syst Sci 12(1):21–37

    Article  Google Scholar 

  • ATV-DVWK (2002) Verdunstung in Bezug zu Landnutzung, Bewuchs und Boden. DWA-Merkblätter ATV-DVWK-M 504. Hennef

  • Bekele EG, Nicklow JW (2007) Multi-objective automatic calibration of SWAT using NSGA-II. J Hydrol 341(3–4):165–176. doi:10.1016/j.jhydrol.2007.05.014

    Article  Google Scholar 

  • Beven K (1993) Prophecy, reality and uncertainty in distributed hydrological modelling. Adv Water Resour 16(1):41–51. doi:10.1016/0309-1708(93)90028-E

    Article  Google Scholar 

  • Beven K (2006) A manifesto for the equifinality thesis. J Hydrol 320(1–2):18–36. doi:10.1016/j.jhydrol.2005.07.007

    Article  Google Scholar 

  • Beven K, Binley A (1992) The future of distributed models—model calibration and uncertainty prediction. Hydrol Process 6(3):279–298. doi:10.1002/hyp.3360060305

    Article  Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. J Hydrol Sci 24(1):43–69. doi:10.1080/02626667909491834

    Article  Google Scholar 

  • Bossard M, Feranec J, Otahel J (2000) CORINE land cover technical guide—Addendum 2000. Tech. Rep. 40, European Environmental Agency, Copenhagen, p 105

  • Bultot F, Dupriez GL (1976) Conceptual hydrological model for an average-sized catchment area, II. Estimate of parameters, validity of model, applications. J Hydrol 29(3–4):273–292. doi:10.1016/0022-1694(76)90041-X

    Article  Google Scholar 

  • Cao WZ, Bowden WB, Davie T, Fenemor A (2006) Multi-variable and multi-site calibration and validation of SWAT in a large mountainous cathchment with high spatial variability. Hydrol Process 20(5):1057–1073. doi:10.1002/hyp.5933

    Article  Google Scholar 

  • CEC (1995) Corine land cover. Technical Guide. Published by the Commission of the European Communities, Luxemburg

  • Conradt T, Hattermann FF, Koch H, Wechsung F (2012a) Spatially differentiated management-revised discharge scenarios for an integrated analysis of multi-realisation climate and land use scenarios for the Elbe River basin. Reg Environ Change. doi:10.1007/s10113-012-0279-4

  • Conradt T, Hattermann FF, Koch H, Wechsung F (2012b) Klima- und Landnutzungsszenarien in ihren Wirkungen auf den Wasserabfluss. In: Wechsung F, Hartje V, Kaden S, Venohr M, Hansjürgens B, Gräfe P (eds) Die Elbe und ihr Einzugsgebiet im globalen Wandel - Szenarien für eine Plus-2-Grad-Welt, chap 2.3. Weißensee-Verlag, Berlin

    Google Scholar 

  • Cowles MK, Carlin BP (1996) Markov chain Monte Carlo convergence diagnostics: a comparative rewiew. J Am Stat Assoc 91(434):883–904. ISSN 0162-1459

    Article  Google Scholar 

  • DGJ (1995a) Deutsches Gewässerkundliches Jahrbuch—Elbegebiet, Teil I: Von der Grenze der CR bis Halle/Saale. Abflußjahr 1990 (1.11.1989–31.12.1990). Landesamt für Umweltschutz Sachsen Anhalt, Magdeburg. ISSN 0948-9126

  • DGJ (1995b) Deutsches Gewässerkundliches Jahrbuch—Elbegebiet, Teil II: Havel mit deutschem Odergebiet. Abflußjahr 1990 (1.11.1989–31.12.1990). Landesumweltamt Brandenburg, Potsdam. ISSN 0949-5509

  • DGJ (1995c) Deutsches Gewässerkundliches Jahrbuch—Elbegebiet, Teil III: Untere Elbe. Abflußjahr 1990 (1.11.1989–31.12.1990). Freie und Hansestadt Hamburg, Wirtschaftsbehörde Strom- und Hafenbau. ISSN 0340-5230

  • Ebel BA, Loague K (2006) Physics-based hydrologic-response simulation: seeing through the fog of equifinality. Hydrol Process 20(13):2887–2900. doi:10.1002/hyp.6388

    Article  Google Scholar 

  • Engeland K, Gottschalk L (2002) Bayesian estimation of parameters in a regional hydrological model. Hydrol Earth Syst Sci 6(5):883–898

    Article  Google Scholar 

  • Engeland K, Xu C-Y, Gottschalk L (2005) Assessing uncertainties in a conceptual water balance model using Bayesian methodology. J Hydrol Sci 50(1):45–63

    Article  Google Scholar 

  • Fedra K (1983) Environmental modeling under uncertainty: Monte Carlo simulation. IIASA-Forschungsbericht RR-83-028, Internationales Institut für Angewandte Systemanalyse, Laxenburg, Österreich. 83 S

  • Fernandez W, Vogel RM, Sankarasubramanian A (2000) Regional calibration of a watershed model. J Hydrol Sci 45(5):689–707

    Article  Google Scholar 

  • Gassman PW, Reyes MR, Green CH, Arnold JG (2007) The soil and water assessment tool: historical development, applications, and future research directions. Trans ASABE 50(4):1211–1250. ISSN 0001-2351

    CAS  Google Scholar 

  • Glugla G, König B (1989) VERMO—Ein Modell für die Berechnung des Jahresganges der Evaporation, Versickerung und Grundwasserneubildung. Tagungsbericht 275, Akademie der Landwirtschaftswissenschaften der DDR, Berlin, S. 85–91

  • Güntner A (2002) Large-scale hydrological modelling in the semi-arid north-east of Brazil. Dissertation, Universität Potsdam. Auch als PIK-Report 77. Potsdam-Institut für Klimafolgenforschung, Potsdam

  • Halfon E, Maguire RJ (1983) Distribution and transformation of fenitrothion sprayed on a pond: modeling under uncertainty. In: Beck MB, van Straten G (eds) Uncertainty and forecasting of water quality. Springer, New York, pp 117–128. ISBN 0387124195

    Chapter  Google Scholar 

  • Hartwich R, Behrens J, Eckelmann W, Haase G, Richter A, Roeschmann G, Schmidt R (1995) Bodenübersichtskarte der Bundesrepublik Deutschland 1 : 1 000 000 (BÜK 1000). Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover

    Google Scholar 

  • Hastings WK (1970) Monte-Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97–109. doi:10.1093/biomet/57.1.97

    Article  Google Scholar 

  • Hattermann FF, Wattenbach M, Krysanova V, Wechsung F (2005) Runoff simulations on the macroscale with the ecohydrological model SWIM in the Elbe catchment—validation and uncertainty analysis. Hydrol Process 19(3):693–714. doi:10.1002/hyp.5625

    Article  Google Scholar 

  • Hornberger GM, Spear RC (1981) An approach to the preliminary-analysis of environmental systems. J Environ Manag 12(1):7–18

    Google Scholar 

  • Hurst HE (1951) Long-term storage capacity of reservoirs. Trans Am Soc Civil Eng 116:770–799

    Google Scholar 

  • Hurst HE (1957) Suggested statistical model of some time series which occur in nature. Nature 180(4584):494

    Article  Google Scholar 

  • IfWW (1958) N-A-U-Karte über das Gebiet der Deutschen Demokratischen Republik 1: 200 000. Niederschlagshöhen und -gleichen, Abflusshöhen und -gleichen, Unterschiedswerte und -gleichen, Abflüsse und Abflußspenden 1921–1940. Institut für Wasserwirtschaft, Berlin

  • Kavetski D, Franks SW, Kuczera G (2002) Confronting input uncertainty in environmental modelling. In: Duan Q, Gupta HV, Sorooshian S, Rousseau AN, Turcotte R (eds) Calibration of watershed models, vol 6 of Water Science and Application Series. American Geophysical Union, Washington, DC, pp 346. ISBN 087590355X

  • Kavetski D, Kuczera G, Franks SW (2006a) Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory. Water Resour Res 42(3):W03407. doi:10.1029/2005WR004368

    Article  Google Scholar 

  • Kavetski D, Kuczera G, Franks SW (2006b) Bayesian analysis of input uncertainty in hydrological modeling: 2. Application. Water Resour Res 42(3):W03408. doi:10.1029/2005WR004376

    Article  Google Scholar 

  • Kitanidis PK, Bras RL (1979) Collinearity and stability in the estimation of rainfall-runoff model parameters. J Hydrol 42(1–2):91–108. doi:10.1016/0022-1694(79)90008-8

    Article  Google Scholar 

  • Klemeš V (1974) The Hurst phenomenon: a puzzle? Water Resour Res 10(4):675–688

    Article  Google Scholar 

  • Krysanova V, Müller-Wohlfeil D-I, Becker A (1998) Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds. Ecol Model 106(2–3):261–289. doi:10.1016/S0304-3800(97)00204-4

    Article  CAS  Google Scholar 

  • Krysanova V, Wechsung F, Arnold J, Srinivasan R, Williams J (2000) SWIM (soil and water integrated model) user manual. PIK Report 69. Potsdam Institute for Climate Impact Research, Potsdam, Germany, pp 239

  • Maidment DR (ed) (1993) Handbook of hydrology. McGraw-Hill, New York

    Google Scholar 

  • Mandelbrot BB, Wallis JR (1968) Noah, Joseph, and operational hydrology. Water Resour Res 4(5):909–918

    Article  Google Scholar 

  • Mandelbrot BB, Wallis JR (1969) Some long-run properties of geophysical records. Water Resour Res 5(2):321–340

    Article  Google Scholar 

  • Mantovan P, Todini E (2006) Hydrological forecasting uncertainty assessment: incoherence of the GLUE methodology. J Hydrol 330(1–2):368–381. doi:10.1016/j.jhydrol.2006.04.046

    Article  Google Scholar 

  • Matsumoto M, Nishimura T (1998) Mersenne Twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Model Comput Simul 8(1):3–30. doi:10.1145/272991.272995

    Article  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Article  CAS  Google Scholar 

  • Moussa R, Chahinian N, Bocquillon C (2007) Distributed hydrological modelling of a Mediterranean mountainous catchment—model construction and multi-site validation. J Hydrol 337(1–2):35–51. doi:10.1016/j.jhydrol.2007.01.028

    Article  Google Scholar 

  • Oesterle H (2001) Reconstruction of daily global radiation for past years for use in agricultural models. Phys Chem Earth Part B Hydrol Oceans Atmosphere 26(3):253–256. doi:10.1016/S14641909(00)002483

    Article  Google Scholar 

  • Österle H, Gerstengarbe F-W, Werner PC (2006) Ein neuer meteorologischer Datensatz für Deutschland, 1951–2003. Beiträge zur 7. Deutschen Klimatagung „Klimatrends: Vergangenheit und Zukunft“. Meteorologisches Institut, Ludwig-Maximilians-Universität München, 9–11. Oktober 2006

  • Pickup G (1977) Testing the efficiency of algorithms and strategies for automatic calibration of rainfall-runoff models. Hydrol Sci Bull 22(2):257–274

    Article  Google Scholar 

  • Post J, Conradt T, Suckow F, Krysanova V, Wechsung F, Hattermann FF (2008) Integrated assessment of cropland soil carbon sensitivity to recent and future climate in the Elbe River basin. J Hydrol Sci 53(5):1043–1058. ISSN 0262-6667

    Article  CAS  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0. URL: http://www.r-project.org

  • Reed S, Koren V, Smith M, Zhang Z, Moreda F, Seo D-J, DMIP Participants (2004) Overall distributed model intercomparison project results. J Hydrol 298(1–4):27–60. doi:10.1016/j.jhydrol.2004.03.031

    Article  Google Scholar 

  • Santhi C, Kannan N, Arnold JG, Di Luzio M (2008) Spatial calibration and temporal validation of flow for regional scale hydrologic modeling. J Am Water Resour Assoc 44(4):829–846. doi:10.1111/j.1752-1688.2008.00207.x

    Article  Google Scholar 

  • Schaller MF, Fan Y (2009) River basins as groundwater exporters and importers: Implications for water cycle and climate modeling. J Geophys Res Atmosphere 114(4):D04103. doi:10.1029/2008JD010636

    Article  Google Scholar 

  • Senatsverwaltung (1992) Gewässerkundlicher Jahresbericht für Berlin und Umland. Abflußjahr 1991 (November 1990 bis Oktober 1991). Senatsverwaltung für Stadtentwicklung und Umweltschutz Berlin

  • Spear RC, Hornberger GM (1980) Eutrophication in Peel Inlet. II. Identification of critical uncertainties via generalized sensitivity analysis. Water Res 14(1):43–49. doi:10.1016/0043-1354(80)90040-8

    Article  CAS  Google Scholar 

  • Stedinger JR, Vogel RM, Lee SU, Batchelder R (2008) Appraisal of the generalized likelihood uncertainty estimation (GLUE) method. Water Resour Res 44:W00B06. doi:10.1029/2008WR006822

    Article  Google Scholar 

  • Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39(8):1201. doi:10.1029/2002WR001642

    Article  Google Scholar 

  • Yang J, Reichert P, Abbaspour KC (2007) Bayesian uncertainty analysis in distributed hydrologic modeling: a case study in the Thur River basin (Switzerland). Water Resour Res 43(10):W10401. doi:10.1029/2006WR005497

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to all project partners involved for the good cooperation. Sincere thanks are given to the German Federal Ministry for Education and Research (BMBF) and the project management agency at the German Aerospace Center (PT-DLR) for the funding of the GLOWA-Elbe project (grant no. 01 LW 0603 A2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Conradt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conradt, T., Koch, H., Hattermann, F.F. et al. Precipitation or evapotranspiration? Bayesian analysis of potential error sources in the simulation of sub-basin discharges in the Czech Elbe River basin. Reg Environ Change 12, 649–661 (2012). https://doi.org/10.1007/s10113-012-0280-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-012-0280-y

Keywords

Navigation