Skip to main content
Log in

Uncovering a positive and negative spatial autocorrelation mixture pattern: a spatial analysis of breast cancer incidences in Broward County, Florida, 2000–2010

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

Spatial cancer data analyses frequently utilize regression techniques to investigate associations between cancer incidences and potential covariates. Model specification, a process of formulating an appropriate model, is a well-recognized task in the literature. It involves a distributional assumption for a dependent variable, a proper set of predictor variables (i.e., covariates), and a functional form of the model, among other things. For example, one of the assumptions of a conventional statistical model is independence of model residuals, an assumption that can be easily violated when spatial autocorrelation is present in observations. A failure to account for spatial structure can result in unreliable estimation results. Furthermore, the difficulty of describing georeferenced data may increase with the presence of a positive and negative spatial autocorrelation mixture, because most current model specifications cannot successfully explain a mixture of spatial processes with a single spatial autocorrelation parameter. Particularly, properly accounting for a spatial autocorrelation mixture is challenging. This paper empirically investigates and uncovers a possible spatial autocorrelation mixture pattern in breast cancer incidences in Broward County, Florida, during 2000–2010, employing different model specifications. The analysis results show that Moran eigenvector spatial filtering provides a flexible method to examine such a mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad OB, Boschi-Pinto C, Lopez AD, Murray CJ, Lozano R, Inoue M (2001) Age standardization of rates: a new WHO standard. World Health Organization, Geneva

    Google Scholar 

  • Anderson RN, Rosenberg HM (1998) Age standardization of death rates: implementation of the year 2000 standard. Natl Vital Stat Rep 47(3):1–17

    Google Scholar 

  • Antunes JLF, Biazevic MGH, De Araujo ME, Tomita NE, Chinellato LEM, Narvai PC (2001) Trends and spatial distribution of oral cancer mortality in São Paulo, Brazil, 1980–1998. Oral Oncol 37(4):345–355

    Article  Google Scholar 

  • Baumont C, Ertur C, Gallo J (2004) Spatial analysis of employment and population density: the case of the agglomeration of Dijon 1999. Geogr Anal 36(2):146–176

    Article  Google Scholar 

  • Besag J, York J, Mollié A (1991) Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math 43(1):1–20

    Article  Google Scholar 

  • Bray F (2002) Age-standardization. In: Parkin DM, Whelan SL, Ferlay J, Teppo L, Thomas DB (eds) Cancer incidence in five continents, vol VIII. IARC Scientific Publications, Lyon

    Google Scholar 

  • Carrière GM, Sanmartin C, Bryant H, Lockwood G (2013) Rates of cancer incidence across terciles of the foreign-born population in Canada from 2001–2006. Can J Public Health 104(7):443–449

    Article  Google Scholar 

  • Chun Y (2008) Modeling network autocorrelation within migration flows by eigenvector spatial filtering. J Geogr Syst 10(4):317–344

    Article  Google Scholar 

  • Chun Y (2014) Analyzing space–time crime incidences using eigenvector spatial filtering: an application to vehicle burglary. Geogr Anal 46(2):165–184

    Article  Google Scholar 

  • Chun Y, Griffith DA (2011) Modeling network autocorrelation in space-time migration flow data: an eigenvector spatial filtering approach. Ann Am Assoc Geogr 101(3):523–536

    Article  Google Scholar 

  • Chun Y, Griffith DA, Lee M, Sinha P (2016) Eigenvector selection with stepwise regression techniques to construct eigenvector spatial filters. J Geogr Syst 18(1):67–85

    Article  Google Scholar 

  • Dai D (2010) Black residential segregation, disparities in spatial access to health care facilities, and late-stage breast cancer diagnosis in metropolitan Detroit. Health Place 16(5):1038–1052

    Article  Google Scholar 

  • DeSantis C, Ma J, Bryan L, Jemal A (2014) Breast cancer statistics, 2013. CA Cancer J Clin 64(1):52–62

    Article  Google Scholar 

  • Fukuda Y, Umezaki M, Nakamura K, Takano T (2005) Variations in societal characteristics of spatial disease clusters: examples of colon, lung and breast cancer in Japan. Int J Health Geogr 4(1):16

    Article  Google Scholar 

  • Gerber F, Furrer R (2015) Pitfalls in the implementation of Bayesian hierarchical modeling of areal count data: an illustration using BYM and Leroux models. J Stat Softw Code Snippets 63(1):1–32

    Google Scholar 

  • Gomez-Rubio V, Bivand RS, Rue H (2014) Spatial models using Laplace approximation methods. In: Fischer MM, Nijkamp P (eds) Handbook of regional science. Springer, New York, pp 1401–1417

    Chapter  Google Scholar 

  • Griffith DA (1987) Spatial autocorrelation: a primer. Association of American Geographers, Washington

    Google Scholar 

  • Griffith DA (2002) A spatial filtering specification for the auto-Poisson model. Stat Probab Lett 58(3):245–251

    Article  Google Scholar 

  • Griffith DA (2003) Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization. Springer, Berlin

    Book  Google Scholar 

  • Griffith DA (2006) Hidden negative spatial autocorrelation. J Geogr Syst 8(4):335–355

    Article  Google Scholar 

  • Griffith DA (2007) Spatial structure and spatial interaction: 25 years later. Rev Reg Stud 37(1):28–38

    Google Scholar 

  • Griffith DA (2009) Modeling spatial autocorrelation in spatial interaction data: empirical evidence from 2002 Germany journey-to-work flows. J Geogr Syst 11(2):117–140

    Article  Google Scholar 

  • Griffith DA (2011) Positive spatial autocorrelation impacts on attribute variable frequency distributions. Chil J Stat 2(2):3–28

    Google Scholar 

  • Griffith D, Chun Y, Li B (2019) Spatial regression analysis using eigenvector spatial filtering. Elsevier, London

    Google Scholar 

  • Gumpertz ML, Pickle LW, Miller BA, Bell BS (2006) Geographic patterns of advanced breast cancer in Los Angeles: associations with biological and sociodemographic factors (United States). Cancer Causes Control 17(3):325–339

    Article  Google Scholar 

  • Haining R (1984) Testing a spatial interacting-markets hypothesis. Rev Econ Stat 66(4):576–583

    Article  Google Scholar 

  • Haining R, Law J, Griffith D (2009) Modelling small area counts in the presence of overdispersion and spatial autocorrelation. Comput Stat Data Anal 53(8):2923–2937

    Article  Google Scholar 

  • Hodges JS, Reich BJ (2010) Adding spatially-correlated errors can mess up the fixed effect you love. Am Stat 64(4):325–334

    Article  Google Scholar 

  • Hu L, Griffith D, Chun Y (2018) Space-Time statistical insights about geographic variation in lung cancer incidence rates: Florida, USA, 2000–2011. Int J Environ Res Public Health 15(11):2406

    Article  Google Scholar 

  • Hussain SK, Altieri A, Sundquist J, Hemminki K (2008) Influence of education level on breast cancer risk and survival in Sweden between 1990 and 2004. Int J Cancer 122(1):165–169

    Article  Google Scholar 

  • Jacob BG, Griffith DA, Mwangangi J, Gathings DA, Mbogo CC, Novak RJ (2011) A cartographic analysis using spatial filter logistic model specifications for implementing mosquito control in Kenya. Urban Geogr 32(2):263–300

    Article  Google Scholar 

  • Kazembe LN, Namangale JJ (2007) A Bayesian multinomial model to analyse spatial patterns of childhood co-morbidity in Malawi. Eur J Epidemiol 22(8):545–556

    Article  Google Scholar 

  • Keitt TH, Bjørnstad ON, Dixon PM, Citron-Pousty S (2002) Accounting for spatial pattern when modeling organism-environment interactions. Ecography 25(5):616–625

    Article  Google Scholar 

  • Kelsey JL, Gammon MD, John EM (1993) Reproductive factors and breast cancer. Epidemiol Rev 15(1):36

    Article  Google Scholar 

  • Lawson AB (2013a) Statistical methods in spatial epidemiology. Wiley, New York

    Google Scholar 

  • Lawson AB (2013b) Bayesian disease mapping: hierarchical modeling in spatial epidemiology. CRC Press, Boca Raton

    Google Scholar 

  • Le Gallo J, Ertur C (2003) Exploratory spatial data analysis of the distribution of regional per capita GDP in Europe, 1980–1995. Pap Reg Sci 82(2):175–201

    Article  Google Scholar 

  • Lee D (2011) A comparison of conditional autoregressive models used in Bayesian disease mapping. Spat Spatio-Temporal Epidemiol 2(2):79–89

    Article  Google Scholar 

  • Lee D, Rushworth A, Sahu SK (2014) A Bayesian localized conditional autoregressive model for estimating the health effects of air pollution. Biometrics 70(2):419–429

    Article  Google Scholar 

  • Lin G, Zhang T (2007) Loglinear residual tests of Moran’s I autocorrelation and their applications to Kentucky breast cancer data. Geogr Anal 39(3):293–310

    Article  Google Scholar 

  • López-Abente G, Aragonés N, García-Pérez J, Fernández-Navarro P (2014) Disease mapping and spatio-temporal analysis: importance of expected-case computation criteria. Geospat Health 9:27–35

    Article  Google Scholar 

  • MacKinnon JA, Duncan RC, Huang Y, Lee DJ, Fleming LE, Voti L, Rudolph M, Wilkinson JD (2007) Detecting an association between socioeconomic status and late stage breast cancer using spatial analysis and area-based measures. Cancer Epidemiol Biomark Prev 16(4):756–762

    Article  Google Scholar 

  • McCullagh P, Nelder J (1989) Generalized linear models. Chapman & Hall, London

    Book  Google Scholar 

  • McPherson K, Steel C, Dixon JM (2000) Breast cancer—epidemiology, risk factors, and genetics. BMJ Br Med J 321(7261):624–628

    Article  Google Scholar 

  • Meliker JR, Jacquez GM, Goovaerts P, Copeland G, Yassine M (2009) Spatial cluster analysis of early stage breast cancer: a method for public health practice using cancer registry data. Cancer Causes Control 20(7):1061–1069

    Article  Google Scholar 

  • Muir K, Rattanamongkolgul S, Smallman-Raynor M, Thomas M, Downer S, Jenkinson C (2004) Breast cancer incidence and its possible spatial association with pesticide application in two counties of England. Public Health 118(7):513–520

    Article  Google Scholar 

  • Neyens T, Faes C, Molenberghs G (2012) A generalized Poisson-gamma model for spatially overdispersed data. Spat Spatio-Temporal Epidemiol 3(3):185–194

    Article  Google Scholar 

  • Odoi A, Martin SW, Michel P, Holt J, Middleton D, Wilson J (2003) Geographical and temporal distribution of human giardiasis in Ontario, Canada. Int J Health Geogr 2(1):5

    Article  Google Scholar 

  • Parkin DM, Bray FI, Devesa SS (2001) Cancer burden in the year 2000. The global picture. Eur J Cancer 37:S4–S66

    Article  Google Scholar 

  • Patuelli R, Griffith DA, Tiefelsdorf M, Nijkamp P (2011) Spatial filtering and eigenvector stability: space-time models for German unemployment data. Int Reg Sci Rev 34(2):253–280

    Article  Google Scholar 

  • Riebler A, Sørbye SH, Simpson D, Rue H (2016) An intuitive Bayesian spatial model for disease mapping that accounts for scaling. Stat Methods Med Res 25(4):1145–1165

    Article  Google Scholar 

  • Robert SA, Trentham-Dietz A, Hampton JM, McElroy JA, Newcomb PA, Remington PL (2004) Socioeconomic risk factors for breast cancer: distinguishing individual-and community-level effects. Epidemiology 15(4):442–450

    Article  Google Scholar 

  • Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc Ser B (Stat Methodol) 71(2):319–392

    Article  Google Scholar 

  • Sheehan TJ, DeChello LM, Kulldorff M, Gregorio DI, Gershman S, Mroszczyk M (2004) The geographic distribution of breast cancer incidence in Massachusetts 1988 to 1997, adjusted for covariates. Int J Health Geogr 3(1):17

    Article  Google Scholar 

  • Tian N, Wilson J, Zhan F (2011) Spatial association of racial/ethnic disparities between late-stage diagnosis and mortality for female breast cancer: where to intervene? Int J Health Geogr 10(1):24

    Article  Google Scholar 

  • Tiefelsdorf M, Boots B (1995) The exact distribution of Moran’s I. Environ Plan A 27:985–999

    Article  Google Scholar 

  • Tiefelsdorf M, Griffith DA (2007) Semiparametric filtering of spatial autocorrelation: the eigenvector approach. Environ Plan A 39(5):1193–1221

    Article  Google Scholar 

  • Timander LM, McLafferty S (1998) Breast cancer in West Islip, NY: a spatial clustering analysis with covariates. Soc Sci Med 46(12):1623–1635

    Article  Google Scholar 

  • Torabi M, Rosychuk RJ (2012) Hierarchical Bayesian spatiotemporal analysis of childhood cancer trends. Geogr Anal 44(2):109–120

    Article  Google Scholar 

  • Vieira VM, Webster TF, Weinberg JM, Aschengrau A (2008) Spatial-temporal analysis of breast cancer in upper Cape Cod, Massachusetts. Int J Health Geogr 7(1):46

    Article  Google Scholar 

  • Wang F, Guo D, McLafferty S (2012) Constructing geographic areas for cancer data analysis: a case study on late-stage breast cancer risk in Illinois. Appl Geogr 35(1):1–11

    Article  Google Scholar 

  • Yang XR, Chang-Claude J, Goode EL, Couch FJ, Nevanlinna H, Milne RL, Gaudet M, Schmidt MK, Broeks A, Cox A, Fasching PA (2011) Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies. J Natl Cancer Inst 103(3):250–263

    Article  Google Scholar 

  • Yeo IK, Johnson RA (2000) A new family of power transformations to improve normality or symmetry. Biometrika 87(4):954–959

    Article  Google Scholar 

  • Zhou HB, Liu SY, Lei L, Chen ZW, Peng J, Yang YZ, Liu XL (2015) Spatio-temporal analysis of female breast cancer incidence in Shenzhen, 2007–2012. Chin J Cancer 34(3):13

    Article  Google Scholar 

Download references

Acknowledgements

We thank the “anonymous” reviewers and editor who provided insight and comments that greatly assisted the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Chun, Y. & Griffith, D.A. Uncovering a positive and negative spatial autocorrelation mixture pattern: a spatial analysis of breast cancer incidences in Broward County, Florida, 2000–2010. J Geogr Syst 22, 291–308 (2020). https://doi.org/10.1007/s10109-020-00323-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-020-00323-5

Keywords

JEL Classification

Navigation