Skip to main content
Log in

Gaining or losing perspective for convex multivariate functions on box domains

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Mixed-integer nonlinear optimization formulations of the disjunction between the origin and a polytope via a binary indicator variable is broadly used in nonlinear combinatorial optimization for modeling a fixed cost associated with carrying out a group of activities and a convex cost function associated with the levels of the activities. The perspective relaxation of such models is often used to solve to global optimality in a branch-and-bound context, but it typically requires suitable conic solvers and is not compatible with general-purpose NLP software in the presence of other classes of constraints. This motivates the investigation of when simpler but weaker relaxations may be adequate. Comparing the volume (i.e., Lebesgue measure) of the relaxations as a measure of tightness, we lift some of the results related to the simplex case to the box case. In order to compare the volumes of different relaxations in the box case, it is necessary to find an appropriate concave upper bound that preserves the convexity and is minimal, which is more difficult than in the simplex case. To address the challenge beyond the simplex case, the triangulation approach is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, J., Hirschowitz, A.: Polynomial interpolation in several variables. J. Algebr. Geom. 4(2), 201–222 (1995)

    MathSciNet  Google Scholar 

  2. Baldoni, V., Berline, N., De Loera, J.A., Köppe, M., Vergne, M.: How to integrate a polynomial over a simplex. Math. Comput. 80(273), 297–325 (2011). https://doi.org/10.1090/S0025-5718-2010-02378-6

    Article  MathSciNet  Google Scholar 

  3. Brion, M.: Points entiers dans les polyèdres convexes. Ann. Sci. l’École Norm. Supér. 4e Sér. 21(4), 653–663 (1988). https://doi.org/10.24033/asens.1572

    Article  Google Scholar 

  4. Günlük, O., Linderoth, J.: Perspective reformulations of mixed integer nonlinear programs with indicator variables. Math. Program., Ser. B 124, 183–205 (2010). https://doi.org/10.1007/s10107-010-0360-z

    Article  MathSciNet  Google Scholar 

  5. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. I: Fundamentals. Grundlehren der Mathematischen Wissenschaften, vol. 305. Springer, Berlin (1993). https://doi.org/10.1007/978-3-662-02796-7

    Book  Google Scholar 

  6. Koopman, B.O.: The optimum distribution of effort. J. Oper. Res. Soc. Am. 1(2), 52–63 (1953). https://doi.org/10.1287/opre.1.2.52

    Article  MathSciNet  Google Scholar 

  7. Lee, J., Morris, W.D., Jr.: Geometric comparison of combinatorial polytopes. Discrete Appl. Math. 55(2), 163–182 (1994). https://doi.org/10.1016/0166-218X(94)90006-X

    Article  MathSciNet  Google Scholar 

  8. Lee, J., Skipper, D., Speakman, E.: Algorithmic and modeling insights via volumetric comparison of polyhedral relaxations. Math. Program., Ser. B 170, 121–140 (2018). https://doi.org/10.1007/s10107-018-1272-6

    Article  MathSciNet  Google Scholar 

  9. Lee, J., Skipper, D., Speakman, E.: Gaining or losing perspective. In: Le Thi, H.A., Le, H.M., Pham Dinh, T. (eds.) Optimization of Complex Systems: Theory, Models, Algorithms and Applications, pp. 387–397. Springer, Berlin (2020). https://doi.org/10.1007/978-3-030-21803-4_39

    Chapter  Google Scholar 

  10. Lee, J., Skipper, D., Speakman, E.: Gaining or losing perspective. J. Glob. Optim. 82, 835–862 (2022). https://doi.org/10.1007/s10898-021-01055-6

    Article  MathSciNet  Google Scholar 

  11. Lee, J., Skipper, D., Speakman, E., Xu, L.: Gaining or losing perspective for piecewise-linear under-estimators of convex univariate functions. In: Gentile, C., Stecca, G., Ventura, P. (eds.) Graphs and Combinatorial Optimization: From Theory to Applications, CTW 2020. AIRO Springer Series, Volume 5, pp. 349–360. Springer, Berlin (2021). https://doi.org/10.1007/978-3-030-63072-0_27

    Chapter  Google Scholar 

  12. Lee, J., Skipper, D., Speakman, E., Xu, L.: Gaining or losing perspective for piecewise-linear under-estimators of convex univariate functions. J. Optim. Theory Appl. 196, 1–35 (2023). https://doi.org/10.1007/s10957-022-02144-6

    Article  MathSciNet  Google Scholar 

  13. MOSEK ApS. Mosek modeling cookbook, release 3.2.3 (2021). https://docs.mosek.com/modeling-cookbook/index.html

  14. Patriksson, M.: A survey on the continuous nonlinear resource allocation problem. Eur. J. Oper. Res. 185(1), 1–46 (2008)

    Article  MathSciNet  Google Scholar 

  15. Sahinidis, N.V.: BARON: a general purpose global optimization software package. J. Global Optim. 8(2), 201–205 (1996). https://doi.org/10.1007/BF00138693

    Article  MathSciNet  Google Scholar 

  16. Serrano, S.A.: Algorithms for Unsymmetric Cone Optimization and an Implementation for Problems with the Exponential Cone. Stanford University, Stanford (2015)

    Google Scholar 

  17. Topkis, D.M.: Supermodularity and Complementarity. Princeton University Press (1998). https://press.princeton.edu/books/hardcover/9780691032443/supermodularity-and-complementarity

  18. Tawarmalani, M., Richard, J.-P.P., Xiong, C.: Explicit convex and concave envelopes through polyhedral subdivisions. Math. Program. 138(1–2), 531–577 (2013). https://doi.org/10.1007/s10107-012-0581-4

    Article  MathSciNet  Google Scholar 

  19. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming. Nonconvex Optimization and its Applications, vol. 65. Kluwer Academic Publishers, Dordrecht (2002). https://doi.org/10.1007/978-1-4757-3532-1

    Book  Google Scholar 

  20. Toh, K.-C., Todd, M.J., Tütüncü, R.H.: SDPT3: a Matlab software package for semidefinite programming, version 1.3. Optim. Methods Softw. 11(1–4), 545–581 (1999). https://doi.org/10.1080/10556789908805762

    Article  MathSciNet  Google Scholar 

  21. Xu, L., Lee, J.: Gaining or losing perspective for convex multivariate functions on a simplex. J. Glob. Optim. (2024). https://doi.org/10.1007/s10898-023-01356-y

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge discussions with Zhongzhu Chen in regard to Lemma 3.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by ONR Grant N00014-21-1-2135. This work is partially based upon work supported by the National Science Foundation under Grant No. DMS-1929284 while the authors were in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI, during the Discrete Optimization program.

Appendix: Triangulation method for the integral of an exponential function on a hypercube

Appendix: Triangulation method for the integral of an exponential function on a hypercube

Let \(\tilde{\textbf{c}}^\top :=\textbf{c}^\top \textbf{A}\). In this “Appendix”, we verify that the result obtained from the triangulation method to compute \(\int _{[0,1]^n} e^{\tilde{\textbf{c}}^\top \textbf{y}} d\textbf{y}\) is the same as \(\prod _{j=1}^n \frac{e^{\tilde{c}_j}-1}{\tilde{c}_j}\) in Proposition 3.8 under a simple genericity assumption: for any nonempty subset S of [n], \(\sum _{j\in S}\tilde{c}_j\ne 0\). This assumption ensures that we can use the short formulae of Brion to compute over each simplex. With Kuhn’s triangulation, we obtain

$$\begin{aligned} \int _{[0,1]^n} e^{\tilde{\textbf{c}}^\top \textbf{y}} d\textbf{y}&= \sum _{(i_1,\dots ,i_n) \in \Omega }\int _{\Delta _{i_1,\dots ,i_n}} e^{\tilde{\textbf{c}}^\top \textbf{y}} d\textbf{y}\\&=\sum _{(i_1,\dots ,i_n)\in \Omega }\sum _{j=0}^n \frac{e^{\tilde{\textbf{c}}_{(i_1,\dots ,i_n)}^\top \textbf{w}_j}}{\prod _{k\ne j} \left( \tilde{\textbf{c}}_{(i_1,\dots ,i_n)}^\top (\textbf{w}_j-\textbf{w}_k)\right) }, \end{aligned}$$

where \(\Delta _{i_1,\dots ,i_n}:=\{\textbf{x}: 0\le x_{i_1}\le \dots \le x_{i_n}\le 1\}\), \(\tilde{\textbf{c}}_{(i_1,\dots ,i_n)}:=(\tilde{c}_{i_1},\dots ,\tilde{c}_{i_n})\), \(\textbf{w}_0:=\textbf{0}\), \(\textbf{w}_j:=\sum _{\ell =n+1-j}^n \textbf{e}_\ell \), and \(\Omega \) is the set of all permutations of [n].

We are going to verify that

$$\begin{aligned} \sum _{(i_1,\dots ,i_n)\in \Omega }\sum _{j=0}^n \frac{e^{\tilde{\textbf{c}}_{(i_1,\dots ,i_n)}^\top \textbf{w}_j}}{\prod _{k\ne j}\left( \tilde{\textbf{c}}_{(i_1,\dots ,i_n)}^\top (\textbf{w}_j-\textbf{w}_k)\right) } = \prod _{j=1}^n \frac{e^{\tilde{c}_j}-1}{\tilde{c}_j}, \end{aligned}$$

by comparing the coefficient of the term \(e^{\tilde{c}_{j_1}+\tilde{c}_{j_2}+\dots +\tilde{c}_{j_k}}\) on both sides. Because

$$\begin{aligned} \prod _{j=1}^n \frac{e^{\tilde{c}_j}-1}{\tilde{c}_j} = \frac{1}{\prod _{j=1}^n\tilde{c}_j}\sum _{k=0}^n (-1)^{n-k}\sum _{1\le j_1<j_2<\dots <j_k\le n}e^{\tilde{c}_{j_1}+\tilde{c}_{j_2}+\dots +\tilde{c}_{j_k}}, \end{aligned}$$

we know the coefficient on the right-hand side is \(\frac{(-1)^{n-k}}{\prod _{j=1}^n\tilde{c}_j}\).

Before computing the coefficient on the left-hand side, we first prove that for \(\ell := |T|\),

$$\begin{aligned} \sum _{(i_1,\dots ,i_{\ell })\in \Omega (T)} \frac{1}{\tilde{c}_{i_{1}}(\tilde{c}_{i_{1}}+ \tilde{c}_{i_{2}})\dots (\tilde{c}_{i_{1}}+\dots + \tilde{c}_{i_{\ell }})}=\frac{1}{\prod _{j\in T}\tilde{c}_j}, \end{aligned}$$
(3)

by induction on \(\ell \). The result is trivial when \(\ell =1\). Suppose the result holds for \(\ell -1\ge 1\), then we can compute by the inductive hypothesis for each fixed \(i_{\ell }\),

$$\begin{aligned}&\sum _{(i_1,\dots ,i_{\ell })\in \Omega (T)}\frac{1}{\tilde{c}_{i_{1}}(\tilde{c}_{i_{1}}+\tilde{c}_{i_{2}})\dots (\tilde{c}_{i_{1}}+\dots +\tilde{c}_{i_{\ell }})}\\&\quad = \sum _{j\in T} \frac{1}{\sum _{s\in T}\tilde{c}_s}\sum _{(i_1,\dots ,i_{\ell })\in \Omega (T),i_{\ell }=j}\frac{1}{\tilde{c}_{i_{1}}(\tilde{c}_{i_{1}}+\tilde{c}_{i_{2}})\dots (\tilde{c}_{i_{1}}+\dots +\tilde{c}_{i_{\ell -1}})}\\&\quad = \sum _{j\in T} \frac{1}{\sum _{s\in T}\tilde{c}_s} \frac{1}{\prod _{s\in T\setminus \{j\}}\tilde{c}_s}~\quad (\text {by the inductive hypothesis})\\&\quad = \frac{1}{\prod _{s\in T}\tilde{c}_s}. \end{aligned}$$

Thus, (3) holds.

Let \(S:=\{j_1,j_2,\dots ,j_k\}\), \(S^c:=[n]{\setminus } S\). The coefficient of the term \(e^{\tilde{c}_{j_1}+\tilde{c}_{j_2}+\dots +\tilde{c}_{j_k}}\) on the left-hand side is

$$\begin{aligned}&\sum _{(i_1,\dots ,i_n)\in \Omega , (i_1,\dots ,i_{n-k})\in S^c}\frac{1}{\prod _{k\ne j}(\tilde{\textbf{c}}_{(i_1,\dots ,i_n)}^\top (\textbf{w}_j-\textbf{w}_k))}\\&\quad =\sum _{(i_1,\dots ,i_{n-k})\in \Omega (S_c)}\frac{1}{-\tilde{c}_{i_{n-k}}(-\tilde{c}_{i_{n-k-1}}-\tilde{c}_{i_{n-k}})\dots (-\tilde{c}_{i_{1}}-\dots -\tilde{c}_{i_{n-k}})}\\&\qquad \cdot \sum _{(i_{n-k+1,\dots ,i_{n}})\in \Omega (S)}\frac{1}{\tilde{c}_{i_{n-k+1}}(\tilde{c}_{i_{n-k+1}}+\tilde{c}_{i_{n-k+2}})\dots (\tilde{c}_{i_{n-k+1}}+\dots +\tilde{c}_{i_{n}})}\\&\quad =\frac{1}{(-1)^{n-k}\prod _{j\in S_c}\tilde{c}_j} \cdot \frac{1}{\prod _{j\in S}\tilde{c}_j}\\&\quad =\frac{(-1)^{n-k}}{\prod _{j\in [n]}\tilde{c}_j}, \end{aligned}$$

where \(\Omega (T)\) is the set of all permutations of T, and the penultimate equation follows from (3). Therefore, we have demonstrated that the results from both methods are the same.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Lee, J. Gaining or losing perspective for convex multivariate functions on box domains. Math. Program. (2024). https://doi.org/10.1007/s10107-024-02087-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10107-024-02087-y

Keywords

Mathematics Subject Classification

Navigation