Skip to main content
Log in

Generalized monotone operators and their averaged resolvents

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

The correspondence between the monotonicity of a (possibly) set-valued operator and the firm nonexpansiveness of its resolvent is a key ingredient in the convergence analysis of many optimization algorithms. Firmly nonexpansive operators form a proper subclass of the more general—but still pleasant from an algorithmic perspective—class of averaged operators. In this paper, we introduce the new notion of conically nonexpansive operators which generalize nonexpansive mappings. We characterize averaged operators as being resolvents of comonotone operators under appropriate scaling. As a consequence, we characterize the proximal point mappings associated with hypoconvex functions as cocoercive operators, or equivalently; as displacement mappings of conically nonexpansive operators. Several examples illustrate our analysis and demonstrate tightness of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This is also known as weakly convex function.

  2. Let \(\beta >0\) and let \(T:X\rightarrow X\). Recall that T is \(\beta \)-cocoercive if \(\beta T\) is firmly nonexpansive, i.e., \((\forall (x,y)\in X\times X)\) \(\langle x-y,Tx-Ty\rangle \ge \beta \Vert Tx-Ty\Vert ^2\).

  3. This is also known as \(\alpha \)-negatively averaged (see [15, Definition 3.7]).

References

  1. Aussel, D., Corvellec, J.-N., Lassonde, M.: Mean value property and subdifferential criteria for lower semicontinuous functions. Trans. Am. Math. Soc. 347, 4147–4161 (1995)

    Article  MathSciNet  Google Scholar 

  2. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. Springer, Berlin (2017)

    Book  Google Scholar 

  3. Bauschke, H.H., Moffat, S.M., Wang, X.: Firmly nonexpansive mappings and maximally monotone operators: correspondence and duality. Set Valued Var Anal 20, 131–153 (2012)

    Article  MathSciNet  Google Scholar 

  4. Bernard, F., Thibault, L.: Prox-regular functions in Hilbert spaces. J. Math. Anal. Appl. 303, 1–14 (2005)

    Article  MathSciNet  Google Scholar 

  5. Borwein, J.M.: Fifty years of maximal monotonicity. Optim. Lett. 4, 473–490 (2010)

    Article  MathSciNet  Google Scholar 

  6. Brezis, H.: Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland/Elsevier, Amsterdam (1973)

    MATH  Google Scholar 

  7. Burachik, R.S., Iusem, A.N.: Set-Valued Mappings and Enlargements of Monotone Operators. Springer, Berlin (2008)

    MATH  Google Scholar 

  8. Clarke, F.H.: Generalized gradients and applications. Trans. Am. Math. Soc. 205, 247–262 (1975)

    Article  MathSciNet  Google Scholar 

  9. Clarke, F.H.: Optimization and Nonsmooth Analysis, Classics in Applied Mathematics, 2nd edn. SIAM, Philadelphia (1990)

    Book  Google Scholar 

  10. Combettes, P.L.: The convex feasibility problem in image recovery. Adv. Imaging Electron Phys. 25, 155–270 (1995)

    Google Scholar 

  11. Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53, 475–504 (2004)

    Article  MathSciNet  Google Scholar 

  12. Combettes, P.L., Pennanen, T.: Proximal methods for cohypomonotone operators. SIAM J. Control Optim. 43, 731–742 (2004)

    Article  MathSciNet  Google Scholar 

  13. Dao, M.N., Phan, H.M.: Adaptive Douglas–Rachford splitting algorithm for the sum of two operators. SIAM J. Optim. 29, 2697–2724 (2019)

    Article  MathSciNet  Google Scholar 

  14. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  MathSciNet  Google Scholar 

  15. Giselsson, P.: Tight global linear convergence rate bounds for Douglas–Rachford splitting. J. Fixed Point Theory Appl. 19, 2241–2270 (2017). https://doi.org/10.1007/s11784-017-0417-1

    Article  MathSciNet  MATH  Google Scholar 

  16. Ioffe, A.D.: Approximate subdifferentials and applications I: the finite-dimensional theory. Trans. Am. Math. Soc. 281, 389–416 (1984)

    MathSciNet  MATH  Google Scholar 

  17. Iusem, A.N., Pennanen, T., Svaiter, P.F.: Inexact variants of the proximal point algorithm without monotonicity. SIAM J. Optim. 13, 1080–1097 (2007)

    Article  MathSciNet  Google Scholar 

  18. Jourani, A., Thibault, L., Zagrodny, D.: Differential properties of the Moreau envelope. J. Funct. Anal. 266, 1185–1237 (2014)

    Article  MathSciNet  Google Scholar 

  19. Krasnosel’skiĭ, M.A.: Two remarks on the method of successive approximations. Uspekhi Matematicheskikh Nauk 10, 123–127 (1955)

    MathSciNet  Google Scholar 

  20. Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)

    Article  MathSciNet  Google Scholar 

  21. Minty, G.J.: Monotone (nonlinear) operators in Hilbert spaces. Duke Math. J. 29, 341–346 (1962)

    Article  MathSciNet  Google Scholar 

  22. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I, Basic Theory. Springer, Berlin (2006)

    Book  Google Scholar 

  23. Mordukhovich, B.S.: Variational Analysis and Applications, Springer Monographs in Mathematics. Springer, Berlin (2018)

    Book  Google Scholar 

  24. Moursi, W.M., Vandenberghe, L.: Douglas–Rachford splitting for a Lipschitz continuous and a strongly monotone operator. J. Optim. Theory Appl. 183, 179–198 (2019). https://doi.org/10.1007/s10957-019-01517-8

    Article  MathSciNet  MATH  Google Scholar 

  25. Pennanen, T.: Local convergence of the proximal point algorithm and multiplier methods without monotonicity. Math. Oper. Res. 27, 170–191 (2002)

    Article  MathSciNet  Google Scholar 

  26. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  Google Scholar 

  27. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (2009). (corrected 3rd printing)

    MATH  Google Scholar 

  28. Simons, S.: Minimax and Monotonicity. Springer, Berlin (1998)

    Book  Google Scholar 

  29. Simons, S.: From Hahn–Banach to Monotonicity. Springer, Berlin (2008)

    MATH  Google Scholar 

  30. Strömberg, T.: Duality between Fréchet differentiability and strong convexity. Positivity 15, 527–536 (2011)

    Article  MathSciNet  Google Scholar 

  31. Thibault, L., Zagrodny, D.: Integration of subdifferentials of lower semicontinuous functions on Banach spaces. J. Math. Anal. Appl. 189, 33–58 (1995)

    Article  MathSciNet  Google Scholar 

  32. Wang, X.: On Chebyshev functions and Klee functions. J. Math. Anal. Appl. 368, 293–310 (2010)

    Article  MathSciNet  Google Scholar 

  33. Zeidler, E.: Nonlinear Functional Analysis and Its Applications II/A: Linear Monotone Operators. Springer, Berlin (1990)

    Book  Google Scholar 

  34. Zeidler, E.: Nonlinear Functional Analysis and Its Applications II/B: Nonlinear Monotone Operators. Springer, Berlin (1990)

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank the editors and three anonymous referees for careful reading and constructive comments. HHB, WMM, and XW were partially supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz H. Bauschke.

Additional information

Dedicated to Marco López on the occasion of his 70th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauschke, H.H., Moursi, W.M. & Wang, X. Generalized monotone operators and their averaged resolvents. Math. Program. 189, 55–74 (2021). https://doi.org/10.1007/s10107-020-01500-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-020-01500-6

Keywords

Mathematics Subject Classification

Navigation