Skip to main content
Log in

Robust resource allocations in temporal networks

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Temporal networks describe workflows of time-consuming tasks whose processing order is constrained by precedence relations. In many cases, the durations of the network tasks can be influenced by the assignment of resources. This leads to the problem of selecting an ‘optimal’ resource allocation, where optimality is measured by network characteristics such as the makespan (i.e., the time required to complete all tasks). In this paper we study a robust resource allocation problem where the task durations are uncertain, and the goal is to minimise the worst-case makespan. We show that this problem is generically \({\mathcal{NP}}\) -hard. We then develop convergent bounds on the optimal objective value, as well as feasible allocations whose objective values are bracketed by these bounds. Numerical results provide empirical support for the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adlakha V.G., Kulkarni V.G.: A classified bibliography of research on stochastic pert networks: 1966–1987. INFOR 27(3), 272–296 (1989)

    MATH  Google Scholar 

  2. Atamtürk A., Zhang M.: Two-stage robust network flow and design under demand uncertainty. Oper. Res. 55(4), 662–673 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Averbakh I.: On the complexity of a class of combinatorial optimization problems with uncertainty. Math. Program. 90(2), 263–272 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Tal A., El Ghaoui L., Nemirovski A.: Robust Optimization. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  5. Bertsimas, D., Natarajan, K., Teo, C.-P.: Applications of semidefinite optimization in stochastic project scheduling. Technical report, High Performance Computation for Engineered Systems, Singapore–MIT Alliance (2002)

  6. Bertsimas D., Sim M.: Robust discrete optimization and network flows. Math. Program. 98(1–3), 49–71 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertsimas D., Sim M.: Tractable approximations to robust conic optimization problem. Math. Program. 107(1–2), 5–36 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Birge J.R., Maddox M.J.: Bounds on expected project tardiness. Oper. Res. 43(5), 838–850 (1995)

    Article  MATH  Google Scholar 

  9. Boyd S.P., Kim S.-J., Patil D.D., Horowitz M.A.: Digital circuit optimization via geometric programming. Oper. Res. 53(6), 899–932 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brucker P., Drexl A., Möhring R., Neumann K., Pesch E.: Resource-constrained project scheduling: notation, classification, models, and methods. Eur. J. Oper. Res. 112(1), 3–41 (1999)

    Article  MATH  Google Scholar 

  11. Calafiore G., Campi M.C.: Uncertain convex programs: randomized solutions and confidence levels. Math. Program. 102(1), 25–46 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen X., Sim M., Sun P.: A robust optimization perspective on stochastic programming. Oper. Res. 55(6), 1058–1071 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen X., Sim M., Sun P., Zhang J.: A linear-decision based approximation approach to stochastic programming. Oper. Res. 56(2), 344–357 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cohen I., Golany B., Shtub A.: The stochastic time-cost tradeoff problem: a robust optimization approach. Networks 49(2), 175–188 (2006)

    Article  MathSciNet  Google Scholar 

  15. Demeulemeester E., Vanhoucke M., Herroelen W.: RanGen: a random network generator for activity-on-the-node networks. J. Schedul. 6(1), 17–38 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Demeulemeester E.L., Herroelen W.S.: Project Scheduling—A Research Handbook. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  17. Elmaghraby S.E.: On criticality and sensitivity in activity networks. Eur. J. Oper. Res. 127(2), 220–238 (2000)

    Article  MATH  Google Scholar 

  18. Eppstein, D.: Finding the k shortest paths. In: IEEE Symposium on Foundations of Computer Science, pp. 154–165 (1994)

  19. Erera A.L., Morales J.C., Savelsbergh M.: Robust optimization for empty repositioning problems. Oper. Res. 57(2), 468–483 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feige, U., Jain, K., Mahdian, M., Mirrokni, V.: Robust combinatorial optimization with exponential scenarios. In: Fischetti, M., Williamson, D.P. (eds.) Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science, pp. 439–453. Springer: Berlin (2007)

  21. Fulkerson D.R.: A network flow computation for project cost curves. Manage. Sci. 7(2), 167–178 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  22. Garey M.R., Johnson D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co, San Francisco (1979)

    MATH  Google Scholar 

  23. Goel V., Grossmann I.E.: A class of stochastic programs with decision dependent uncertainty. Math. Program. 108(2–3), 355–394 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hagstrom J.N.: Computational complexity of PERT problems. Networks 18(2), 139–147 (1988)

    Article  MathSciNet  Google Scholar 

  25. Hettich R., Kortanek K.O.: Semi-infinite programming: theory, methods, and applications. SIAM Rev. 35(3), 380–429 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Horst R., Pardalos P.M., Thoai N.V.: Introduction to Global Optimization, 2nd edn. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  27. Ibaraki T.: Approximate algorithms for the multiple-choice continuous knapsack problems. J. Oper. Res. Soc. Japan 23(1), 28–63 (1980)

    MathSciNet  MATH  Google Scholar 

  28. Janak S.L., Lin X., Floudas C.A.: A new robust optimization approach for scheduling under uncertainty: II. uncertainty with known probability distribution. Comput. Chem. Eng. 31(3), 171–195 (2007)

    Article  Google Scholar 

  29. Kelley J.E. Jr: Critial-path planning and scheduling: mathematical basis. Oper. Res. 9(3), 296–320 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  30. Khandekar, R., Kortsarz, G., Mirrokni, V., Salavatipour, M.R.: Two-stage robust network design with exponential scenarios. In: Halperin, D., Mehlhorn, K. (eds.) Algorithms—ESA 2008, Lecture Notes in Computer Science, pp. 589–600. Springer, Berlin (2008)

  31. Kouvelis P., Yu G.: Robust Discrete Optimization and its Applications. Kluwer, Dordrecht (1997)

    MATH  Google Scholar 

  32. Kwow Y.-K., Ahmad I.: Static scheduling algorithms for allocating directed task graphs to multiprocessors. ACM Comput. Surveys 31(4), 406–471 (1999)

    Article  Google Scholar 

  33. Li Z., Ierapetritou M.: Process scheduling under uncertainty: review and challenges. Comput. Chem. Eng. 32(4–5), 715–727 (2008)

    Article  Google Scholar 

  34. Liebchen C., Lübbecke M.E., Möhring R.H., Stiller S.: The concept of recoverable robustness, linear programming recovery, and railway applications. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds) Robust and Online Large-Scale Optimization, Lecture Notes in Computer Science, pp. 1–27. Springer, Berlin (2009)

    Chapter  Google Scholar 

  35. Limongelli, C., Pirastu, R.: Exact solution of linear equation systems over rational numbers by parallel p-adic arithmetic. RISC Report Series 94–25, University of Linz, Austria (1994)

  36. Lin X., Janak S.L., Floudas C.A.: A new robust optimization approach for scheduling under uncertainty: I. Bounded uncertainty. Comput. Chem. Eng. 28(6–7), 1069–1085 (2004)

    Article  Google Scholar 

  37. Ludwig A., Möhring R.H., Stork F.: A computational study on bounding the makespan distribution in stochastic project networks. Ann. Oper. Res. 102, 49–64 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Malcolm D.G., Roseboom J.H., Clark C.E., Fazar W.: Application of a technique for research and development program evaluation. Oper. Res. 7(4), 646–669 (1959)

    Article  Google Scholar 

  39. Meilijson I., Nádas A.: Convex majorization with an application to the length of critical paths. J. Appl. Probab. 16(3), 671–677 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  40. Möhring R.H.: Scheduling under uncertainty: bounding the makespan distribution. In: Alt, H. (ed) Conputational Discrete Mathematics, Lecture Notes in Computer Science., pp. 79–97. Springer, Berlin (2001)

    Google Scholar 

  41. Mulvey J.M., Vanderbei R.J., Zenios S.A.: Robust optimization of large-scale systems. Oper Res. 43(2), 264–281 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  42. Neumann K.: Scheduling of projects with stochastic evolution structure. In: Weglarz, J. (eds) Project Scheduling: Recent Models, Algorithms, and Applications, pp. 309–332. Kluwer, Dordrecht (1999)

    Google Scholar 

  43. Ordóñez F., Zhao J.: Robust capacity expansion of network flows. Networks 50(2), 136– (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ruszczyński, A., Shapiro, A. (eds): Stochastic Programming. Elsevier, Amsterdam (2003)

    MATH  Google Scholar 

  45. Sahinidis N.V.: Optimization under uncertainty: State-of-the-art and opportunities. Comput. Chem. Eng. 28(6–7), 971–983 (2004)

    Article  Google Scholar 

  46. Schwindt C.: Resource Allocation in Project Management. Springer, Berlin (2005)

    Google Scholar 

  47. Shabtay D., Steiner G.: A survey of scheduling with controllable processing times. Discr. Appl. Math. 155(13), 1643–1666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Stiller, S.: Extending Concepts of Reliability. Network Creation Games, Real-time Scheduling, and Robust Optimization. PhD thesis, Institut für Mathematik, Technische Universität Berlin (2009)

  49. Wiesemann, W., Kuhn, D., Rustem, B.: Multi-resource allocation in stochastic project scheduling. Ann. Oper. Res. (2008, in press)

  50. Zeng L., Benatallah B., Ngu A.H.H., Dumas M., Kalagnanam J., Chang H.: QoS-Aware middleware for web services composition. IEEE Tran. Softw. Eng. 30(5), 311–327 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Wiesemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiesemann, W., Kuhn, D. & Rustem, B. Robust resource allocations in temporal networks. Math. Program. 135, 437–471 (2012). https://doi.org/10.1007/s10107-011-0478-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-011-0478-7

Keywords

Mathematics Subject Classification (2010)

Navigation