Skip to main content
Log in

Cone superadditivity of discrete convex functions

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

A function f is said to be cone superadditive if there exists a partition of R n into a family of polyhedral convex cones such that f(z + x) + f(z + y) ≤ f(z) + f(z + x + y) holds whenever x and y belong to the same cone in the family. This concept is useful in nonlinear integer programming in that, if the objective function is cone superadditive, the global minimality can be characterized by local optimality criterion involving Hilbert bases. This paper shows cone superadditivity of L-convex and M-convex functions with respect to conic partitions that are independent of particular functions. L-convex and M-convex functions in discrete variables (integer vectors) as well as in continuous variables (real vectors) are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahuja R.K., Magnanti T.L., Orlin J.B.: Network Flows—Theory, Algorithms and Applications. Prentice-Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  2. Favati P., Tardella F.: Convexity in nonlinear integer programming. Ricerca Operativa 53, 3–44 (1990)

    Google Scholar 

  3. Fujishige S.: Submodular Functions and Optimization, Annals of Discrete Mathematics 58. 2nd edn. Elsevier, Amsterdam (2005)

    Google Scholar 

  4. Fujishige S., Murota K.: Notes on L-/M-convex functions and the separation theorems. Math. Programm. 88, 129–146 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gordan P.: Über die Auflösung linearer Gleichungen mit reellen Coefficienten. Mathematische Annalen 6, 23–28 (1873)

    Article  MathSciNet  MATH  Google Scholar 

  6. Graver J.E.: On the foundations of linear and integer linear programming I. Math. Programm. 8, 207–226 (1975)

    Article  MathSciNet  Google Scholar 

  7. Haus U.-U., Köppe M., Weismantel R.: A primal all-integer algorithm based on irreducible solutions. Math. Programm. 96, 205–246 (2003)

    Article  MATH  Google Scholar 

  8. Hemmecke R., Onn S., Weismantel R.: A polynomial oracle-time algorithm for convex integer minimization. Math. Programm. Ser. A 126, 97–117 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hirai H., Murota K.: M-convex functions and tree metrics. Jpn J. Ind. Appl. Math. 21, 391–403 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lee J., Onn S., Weismantel R.: On test sets for nonlinear integer maximization. Oper. Res. Lett. 36, 439–443 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Murota K.: Convexity and Steinitz’s exchange property. Adv. Math. 124, 272–311 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Murota K.: Discrete convex analysis. Math. Programm. 83, 313–371 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Murota K.: Discrete Convex Analysis, SIAM Monographs on Discrete Mathematics and Applications, vol. 10. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Google Scholar 

  14. Murota, K.: Recent developments in discrete convex analysis. In: Cook, W., Lovász, L., Vygen, J., (eds.) Research Trends in Combinatorial Optimization, Bonn 2008, Chapter 11, pp. 219–260. Springer, Berlin (2009)

    Chapter  Google Scholar 

  15. Murota K., Saito H., Weismantel R.: Optimality criteria for a class of nonlinear integer programs. Oper. Res. Lett. 32, 468–472 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Murota K., Shioura A.: M-convex function on generalized polymatroid. Math. Oper. Res. 24, 95–105 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Murota K., Shioura A.: Extension of M-convexity and L-convexity to polyhedral convex functions. Adv. Appl. Math. 25, 352–427 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Murota K., Shioura A.: Conjugacy relationship between M-convex and L-convex functions in continuous variables. Math. Programm. 101, 415–433 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Murota K., Shioura A.: Fundamental properties of M-convex and L-convex functions in continuous variables. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E 87-A, 1042–1052 (2004)

    Google Scholar 

  20. Sebő A.: Hilbert bases, Caratheodory’s theorem and combinatorial optimization. In: Kannan, R., Pulleyblank, W. (eds) Integer Programming and Combinatorial Optimization, pp. 431–455. University of Waterloo Press, Waterloo (1990)

    Google Scholar 

  21. van der Corput J.G.: über Systeme von linear-homogenen Gleichungen und Ungleichungen. Proceedings Koninklijke Akademie van Wetenschappen te Amsterdam 3, 368–371 (1931)

    Google Scholar 

  22. Weismantel R.: Test sets of integer programs. Math. Methods Oper. Res. 47, 1–37 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, Y., Murota, K. & Weismantel, R. Cone superadditivity of discrete convex functions. Math. Program. 135, 25–44 (2012). https://doi.org/10.1007/s10107-011-0447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-011-0447-1

Keywords

Mathematics Subject Classification (2000)

Navigation